Interchange Documentation (Full)

Interchange Ecommerce Functions

Interchange Ecommerce Functions

1. THE ORDER PROCESS

Interchange has a completely flexible order basket and checkout scheme. The foundation demo presents a
common use of this process, in the directory pages/ord —- the files are:

basket.html The order basket displayed by default
checkout.html The form where the customer enters their billing
and shipping info

and in the directory etc:

receipt.html The receipt displayed to the customer
report The order report mailed to you
mail_receipt The customer's email copy (if requested)

It is not strictly necessary to display an order basket when an item is ordered. If you specify a different page
be displayed that is fine, but most customers will be confused if you don't give them an indication that the
order operation has succeeded.

Any order basket is an HTML FORM. It will have a number of variables on it. At the minimum it must have a
[item—list] to loop through the items, and the quantity of each item must be set in some place on that
form. Any valid Interchange tags may be used on the page, and you may use multiple item lists if necessary

1.1. How to order an item

Interchange can either use a form-based order or a link—based order to place an item in the shopping cart.
link—-based order uses the special [order item—code] tag:

[order code]

named attributes:

[order code="sku" quantity="n"* href="page"* cart="cartname"* base="table"*]
* = optional parameters

Expands into a hypertext link which will include the specified code in the list of products to order and display
the order page. code should be a product SKU listed in one of the "products” tables, and is the only requirec
parameter. quantity may be specified if more than one (the default) of the item should be placed in the cart.
href allows some page other than the default order page to be displayed once the item has been added to tt
cart. cart selects the shopping cart the item will be placed in. The optional argument base constrains the ord
to a particular products file —— if not specified, all tables defined as products files will be searched in sequen
for the item.

Example:
Order a [order TK112]Toaster today.
Note that this is the same as:

Order a [page order TK112]Toaster today.

1. THE ORDER PROCESS 2

Interchange Documentation (Full)

You can change frames for the order with:

Order a Toaster today.
[forder]

Expands into . May be used to give the order tag the appearance of being a container tag, but neither
necessary nor recommended.

To order with a form, you set the form variable mv_order_item to the item-code/SKU and use the
refresh action:

<FORM ACTION="[process-target]* METHOD=POST>

<INPUT TYPE=hidden NAME="mv_todo" VALUE="refresh">
<INPUT TYPE=hidden NAME="mv_order_item" VALUE="TK112">
Order <INPUT NAME="mv_order_quantity" SIZE=3 VALUE=1> toaster

<INPUT TYPE=submit VALUE="Order!">
</[FORM>

You may batch select whole groups of items:

<FORM ACTION="[process-target]* METHOD=POST>
<INPUT TYPE=hidden NAME="mv_todo" VALUE="refresh">

<INPUT TYPE=hidden NAME="mv_order_item" VALUE="TK112">
<INPUT NAME="mv_order_quantity" SIZE=3> Standard Toaster

<INPUT TYPE=hidden NAME="mv_order_item" VALUE="TK200">
<INPUT NAME="mv_order_quantity" SIZE=3> Super Toaster

<INPUT TYPE=submit VALUE="Order!">
</[FORM>

Items that have a quantity of zero (or blank) will be skipped, and only items with a positive quantity will be
placed in the basket.

You may also specify attributes like size or color at time of order (see How to set up an order button).

1.2. How to set up an order link
On a product display page, use:
[order 00-0011]Order the Mona Lisa

If coming from a search results or on—-the—fly page, you may use the generated [item—code] thusly:

[order [item—code]]Order [item-field name]

Bear in mind that if you have not reached the page via a search or on—the—fly operation, [item—-code]
means nothing and will cause an error.

1.2. How to set up an order link 3

Interchange Documentation (Full)

1.3. How to set up an order button

Interchange can order via form submission as well. This allows you to order a product (or group of products
via a form button. In its simplest form, it is:

<FORM ACTION="[process-target]" METHOD=POST>

<INPUT TYPE=hidden NAME=mv_todo VALUE=refresh>

<INPUT TYPE=hidden NAME=mv_order_item VALUE="00-0011">
<INPUT TYPE=submit VALUE="Order the Mona Lisa">

</FORM>

The default quantity is one. An initial quantity may be set by the user by adding an mv_order_quantity
variable:

Number to order:<INPUT TYPE=text NAME=mv_order_quantity VALUE="1">

You can order multiple items by stacking the variables:

<FORM ACTION="[process-target]" METHOD=POST>

<INPUT TYPE=hidden NAME=mv_todo VALUE=refresh>

<INPUT TYPE=hidden NAME=mv_order_item VALUE="00-0011">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="00-0011a">
<INPUT TYPE=submit VALUE="Order the Mona Lisa with frame">
</FORM>

Initial size or color may be set as well, provided UseModifier is set up properly:
<INPUT TYPE=hidden NAME=mv_order_size VALUE="L">

If the order is coming from a generated flypage, loop list, or search results page, you can get a canned sele
box from the [item—accessories size] or [item—accessories size] tag. See Item Attributes.

1.4. How to set up an on—-the—fly item

If you enable the catalog directive OnFly, setting it to the name of a subroutine (or possibly a UserTag) that
can handle its calls, then Interchange will add items to the basket that are not in the product database.
Interchange supplies an internal onfly subroutine, which will work according to the examples given below.

In catalog.cfg:

OnFly onfly

If your item code is not to be named mv_order_item then you must perform a rename in the Autoload
routine.

A basic link can be generated like:

<a href="[area form="

mv_todo=refresh

mv_order_item=000101

mv_order_fly=description=An on-the—fly item|price=100.01
"">Order item 000101

1.3. How to set up an order button 4

Interchange Documentation (Full)

The form parameter value mv_order_fly can contain any number of fields which will set corresponding
parameters in the item attributes. The fields are separated by the pipe (]) character and contain
value—parameter pairs separated by an = sign. (These are URL-encoded by the [area ...] or [page

...] tag, of course.) You can set a size, color, or any other parameter.

The special attribute mv_price can be used in conjunction with the CommonAdjust atom $ to set the
price for checkout and display.

The [item-list] sub—tag [item—description], when used with an item-list, will use the item

attribute description to display in the basket. Note that [item—field description] or

[item—data products description] will NOT work, as both of these tags reference an actual field

value for a record in the products table — not applicable for on—-the-fly items. Similarly, an attempt to
generate a flypage for an on-the—fly item ([page 000101], for example) will fail, resulting in the display
of the SpecialPage missing.

If you wish to set up a UserTag to process on-the—fly items, it should accept a call of

usertag(mv_item_code, mv_item_quantity, mv_order_fly)

The mv_item_code and mv_order_fly parameters are required to trigger Interchange's add_item
routine (along with mv_todo=refresh to set the action).

The item will always act as if Separateltems or mv_separate_items is set.

Multiple items can be ordered at once by stacking the variables. If there is only one mv_order_item
instance, however, you can stack the mv_order_fly variable so that all are concatenated together as with
the | symbol. So the above example could be done as:

[area form="
mv_todo=refresh
mv_order_item=000101
mv_order_fly=description=An on-the-fly item
mv_order_fly=price=100.00

]

Multiple items would need multiple instances of mv_order_item with a corresponding mv_order_fly
for each mv_order_item. You can order both 000101 and 000101 as follows:

[area form="
mv_todo=refresh

mv_order_item=000101
mv_order_fly=description=An on-the—fly item|price=100.00

mv_order_item=000102
mv_order_fly=description=Another on—the—fly item|price=200.00

]

The following two forms correspond to the above two examples, in order, with the slight refinement of addin
a guantity:

<FORM ACTION="[area process]" METHOD=POST>
<INPUT TYPE=hidden NAME=mv_todo VALUE="refresh">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="000101">

1.3. How to set up an order button 5

Interchange Documentation (Full)

Qty: <INPUT SIZE=2 NAME=mv_order_quantity VALUE="1">
<INPUT TYPE=hidden NAME=mv_order_fly
VALUE="description=An on-the-fly item|price=100.00">
<INPUT TYPE=submit VALUE="Order button">
</FORM>

<FORM ACTION="[area process]" METHOD=POST>
<INPUT TYPE=hidden NAME=mv_todo VALUE="refresh">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="000101">
Qty: <INPUT SIZE=2 NAME=mv_order_quantity VALUE="1">

<INPUT TYPE=hidden NAME=mv_order_fly
VALUE="description=An on-the-fly item|price=100.00">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="000102">
Qty: <INPUT SIZE=2 NAME=mv_order_quantity VALUE="1">

<INPUT TYPE=hidden NAME=mv_order_fly
VALUE="description=Another on-the-fly item|price=200.00">
<INPUT TYPE=submit VALUE="Order two different with a button">
</FORM>

1.5. Order Groups

Interchange allows you to group items together, making a master item and sub-items. This can be used to
delete accessories or options when the master item is deleted. In its simplest form, you order just one maste
item and all subsequent items are sub-items.

<FORM ACTION="[process-target]" METHOD=POST>

<INPUT TYPE=hidden NAME=mv_todo VALUE=refresh>

<INPUT TYPE=hidden NAME=mv_order_group VALUE="1">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="00-0011">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="00-0011a">
<INPUT TYPE=submit VALUE="Order the Mona Lisa with frame">
</FORM>

If you wish to stack more than one master item, then you must define mv_order_group for all items, with
either a 1 value (master) or 0 value (sub-item). A master owns all subsequent sub—items until the next mas
is defined.

<FORM ACTION="[process-target]" METHOD=POST>

<INPUT TYPE=hidden NAME=mv_todo VALUE=refresh>

<INPUT TYPE=hidden NAME=mv_order_group VALUE="1">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="00-0011">
<INPUT TYPE=hidden NAME=mv_order_group VALUE="0">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="00-0011a">
<INPUT TYPE=hidden NAME=mv_order_group VALUE="1">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="19-202">
<INPUT TYPE=hidden NAME=mv_order_group VALUE="0">
<INPUT TYPE=hidden NAME=mv_order_item VALUE="99-102">
<INPUT TYPE=submit VALUE="Order items">

</FORM>

When the master item 00—0011 is deleted from the basket, 00-0011a will be deleted as well. And when
19-202 is deleted, then 99-102 will be deleted from the basket.

NOTE: Use of checkboxes for this type of thing can be hazardous, as they do not pass a value when
unchecked. It is preferable to use radio groups or select/drop—down widgets. If you must use checkboxes, b
sure to explicitly clear mv_order_group and mv_order_item somewhere on the page which contains
the form:

1.5. Order Groups 6

Interchange Documentation (Full)

[value name=mv_order_group set="]
[value name=mv_order_item set="]

The attributes mv_mi and mv_si are set to the group and sub-item status of each item. The group, containe

in the attribute mv_mi, is a meaningless yet unique integer. All items in a group will have the same value of
mv_mi. The attribute mv_si is set to 0 if the item is a master item, and 1 if it is a sub—item.

1.6. Basket display

The basket page(s) are where the items are tracked and adjusted by the customer. It is possible to have an
unlimited number of basket pages. It is also possible to have multiple shopping carts, as in buy or sell. This
allows a basket/checkout type of ordering scheme, with custom order pages for items which have many
accessories.
The name of the page to display can be configured in several ways:

1. Set the SpecialPage order to the page to display when an item is ordered.

2. Use the [order code=item page=page_name] Order it! form of order tag to

specify an arbitrary order page for an item.
3. If already on an order page, set the mv_orderpage, mv_nextpage, mv_successpage, or mv_failpage
variables.

The following variables can be used to control cart selection and page display:
mv_cartname
The shopping cart (default is main) to be used for this order operation.
mv_failpage
Page to be displayed on a failed order check (see Advanced Multi-level Order Pages)
mv_nextpage
Page to display on a return operation.
mv_orderpage
Page to be displayed on a refresh.
mv_successpage
Page to be displayed on a successful order check (see Advanced Multi-level Order Pages).

mv_order_profile

Order profile to be used if the form action is submit (see Advanced Multi-level Order Pages).

1.6. Basket display 7

Interchange Documentation (Full)

1.7. Multiple Shopping Carts

Interchange allows you to define and maintain multiple shopping carts. One shopping cart —— main, by name
—— is defined when the user session starts. If the user orders item M1212 with the following tag:

[order code=M1212 cart=layaway] Order this item!

the order will be placed in the cart named layaway. However, by default you won't see the just-ordered item
on the basket page. That is because the default shopping basket displays the contents of the 'main’ cart onl
So copy the default basket page (pages/ord/basket.html in the demo) to a new file, insert a [cart

layaway] tag, and specify it as the target page in your [order] tag:

[order code=M1212 cart=layaway page=ord/lay_basket] Order this item!

Now the contents of the layaway cart will be displayed. Most of the ITL tags that are fundamental to cart
display accept a 'cartname’ option, allowing you to specify which cart to be used:

[cart carthame]

A 'sticky' setting of the default cart name to use for all subsequent cart-related tags. Convenient, but you m
remember to use [cart main] to get back to the primary cart! As an alternative, you can specify the

desired cart as a parameter of the other tags. These are not sticky, referencing the specified cart only for the
instance in which they are called:

[item—list carthame]...[/item-list]

Iterates over the items in the specified cart — tags like [item—quantity] and [item—price] will be
evaluated accordingly;

[nitems cartname]

Returns the total number of items in the specified cart;

[subtotal carthame]

Returns the monetary subtotal for the contents of specified cart;

[shipping cartname], [handling carthame], [salestax cartname], [total-cost carthame]

You get the idea. It is worth noting that tags which summarize cart contents do not need to be in used conce
or in conjunction with an [item-list]. For instance, you can display just the grand total for a cart on the
sidebar or bottom of each page, using [total-cost] by itself, if you wish.

You can also order items from a form, using the mv_order_item, mv_carthame, and optional
mv_order_quantity variables.

<FORM METHOD=POST ACTION="[process]">

<input type=checkbox name="mv_order_item" value="M3243"> I[tem M3243
<input name="mv_order_quantity" value="1"> Quantity

<input type=hidden name="mv_cartname" value="layaway">

<input type=hidden name="mv_doit" value="refresh">

<input type=submit name="mv_junk" value="Place on Layaway Now!">

1.7. Multiple Shopping Carts 8

Interchange Documentation (Full)

</[FORM>

If you need to utilize an alternative item price in conjunction with the use of a custom cart, see the section ot
PRODUCT PRICING for pricing methods and strategies.

1.7. Multiple Shopping Carts 9

2. PRODUCT PRICING

Interchange maintains a price in its database for every product. The price field is the one required field in the
product database —- it is necessary to build the price routines.

For speed, Interchange builds the code that is used to determine a product's price at catalog configuration
time. If you choose to change a directive that affects product pricing you must reconfigure the catalog.

2.1. Simple pricing
The simplest method is flat pricing based on a fixed value in the products database. If you put that price in

a field named price, you don't need to do more. If you want to change pricing based on quantity, size, color
or other factors read on.

2.2. Price Maintenance with CommonAdjust

A flexible chained pricing scheme is available when the CommonAdjust directive is set.
We talk below about a CommonAdjust string; it will be defined in due time.

A few rules about CommonAdjust, all assuming the PriceField directive is set to price:
1

If CommonAdjust is set to any value, a valid CommonAdjust string or not, extended price adjustments are
enabled. It may also hold the default pricing scheme.

2
The price field may also hold a CommonAdjust string. It takes precedence over the default.
3

If the value of the CommonAdjust directive is set to a CommonAdjust string, and the price field is empty
or specifically 0, then it will be used to set the price of the items.

4
If no CommonAdjust strings are found, then the price will be 0, subject to any later application of discounts.
5

If another CommonAdjust string is found as the result of an operation, it will be re—parsed and the result
applied. Chaining is retained; a fallback may be passed and will take effect.

Prices may be adjusted in several ways, and the individual actions are referred to below as atoms. Price atc
may be final, chained, or fallback. A final price atom is always applied if it does not evaluate to zero. A
chained price atom is subject to further adjustment. A fallback price atom is skipped if a previous chained
price was not zero.

2. PRODUCT PRICING 10

Interchange Documentation (Full)

Atoms are separated by whitespace, and may be quoted (although there should not normally be whitespace
a setting). A chained item ends with a comma. A fallback item has a leading semi—colon. Final atoms have r
comma appended or semi—colon prepended.

A settor is the means by which the price is set. There are eight different types of price settors. All settors cat
then yield another CommonAdjust string.

It is quite possible to create endless loops, so the maximum number of initial CommonAdjust strings is set t
16, and there may be only 32 iterations by default before the price will return zero on an error. (The maximu
iterations is specified with theimit directive.)

NOTE: Common needs are easily shown but not so easily explained; skip to the examples in the reference
below if your vision starts to blur when reading the next section. 8-)

USAGE: Optional items below have asterisks appended. The asterisk should not be used in the actual string
Optional base or table always defaults to the active products database table. The optional key defaults to
the item code except in a special case for the attribute—based lookup. The field name is not optional except
the case of an attribute lookup.

N.NN or —N.NN

where N is a digit. A number which is applied directly; for instance 10 will yield a price of 10. May be a
positive or negative number.

N.NN%

where N is a digit. A number which is applied as a percentage of the current price value. May be a positive
negative number. For example, if the price is 10 and —8% is applied, the next price value will be 9.20.

table*:column:key*
Causes a straight lookup in a database table. The optional table defaults to the main products database tabl
for the item (subject of course to multiple product files). The column must always be present. The optional
key defaults to the item code except in a special case for the attribute—based lookup. The return value is the
re—parsed as another price settor.
table*:coll..col5,col10:key*
Causes a quantity lookup in database table table (which defaults to the products database), with a set of
comma-separated fields, looked up by the optional key. (Key defaults to the item code, of course). If ranges
are specified with .., each column in the sequence will be used; Therefore

pricing:pl1,p2,p3,p4,p5,p10:
is the same as

pricing:p1..p5,p10:
Leading non-digits are stripped, and the item quantity is compared with the numerical portion of the column

name. The price is set to the value of the database column (numeric portion) that is at least equal to it but
doesn't yet reach the next break.

2. PRODUCT PRICING 11

Interchange Documentation (Full)

WARNING: If the field at the appropriate quantity level is blank, a zero cost will be returned from the atom.
It is important to have all columns populated.

==attribute:table*:column*:key*

Does an attribute—based adjustment. The attribute is looked up in the database table, with the optional
column defaulting to the same name as the value of the attribute. If the column is not left blank, the key is se
to the value of the attribute if blank.

& CODE

The leading & sign is stripped and the code is passed to the equivalent of a [calc] tag. No Interchange tags
can be used, but the &tag_data routine is available, the current value of the price and quantity are available
$s, and the current item (code, quantity, price, and any attributes) are available as $item, all forced to the
package Vend::Interpolate. That means that in a UserTag:

$Vend::Interpolate::item is the current item
$Vend::Interpolate::item—>{code} gives key for current item
$Vend::Interpolate::item—>{size} gives size for current item (if there)
$Vend::Interpolate::item—>{mv_ib} gives database ordered from

[valid Interchange tags]

If the settor begins with a square bracket ([) or underscore, it is parsed for Interchange tags with variable
substitution (but no Locale substitution). You may define a price in a Variable in this fashion. The string is
re—submitted as an atom, so it may yield yet another settor.

$

Tells Interchange to look in the mv_price attribute of the shopping cart, and apply that price as the final
price, if it exists. The attribute must be a numerical value.

>>word

Tells the routine to return word directly as the result. This is not useful in pricing, as it will evaluate to zero.
But when CommonAdjust is used for shipping, it is a way of re—directing shipping modes.

word

The value of word, which must not match any of the other settors, is available as a key for the next lookup
(only). If the next settor is a database lookup, and it contains a dollar sign ($) the word will be substituted:;
i.e. table:column:$ becomes table:column:word.

(settor)

The value returned by settor will be used as a key for the next lookup, as above.

2.3. CommonAdjust Examples

Most examples below use an outboard database table named pricing, but any valid table including the
products table can be used. We will refer to this pricing table:

2.3. CommonAdjust Examples 12

Interchange Documentation (Full)

code common gl g5 ql0 XL S red
99-102 10 9 8 1 -0.500.75
00-343 2

red 0.75

The simplest case is a straight lookup on an attribute; size in this case.
10.00, ==size:pricing

With this value in the price field, a base price of 10.00 will be adjusted with the value of the size attribute.

If size for the item 99-102 is set to XL then 1.00 will be added for a total price of 11.00; if it is S then .50 will
be subtracted for a total price of 9.50; for any other value of size no further adjustment would be made.
00-343 would be adjusted up 2.00 only for XL.

10.00, ==size:pricing, ==color:pricing

This is the same as above, except both size and color are adjusted for. A color value of red for item code
99-102 would add 0.75 to the price. For 00—-343 it would have no effect.

10.00, ==size:pricing, ==color:pricing:common

Here price is set based on a common column, keyed by the value of the color attribute. Any item with a colo
value of red would have 0.75 added to the base price.

pricing:q1,95,910:, ;10.00, ==size:pricing, ==color:pricing:common

Here is a quantity price lookup, with a fallback price setting. If there is a valid price found at the quantity of 1
5, or 10, depending on item quantity, then it will be used. The fallback of 10.00 only applies if no
non-zero/non-blank price was found at the quantity lookup. In either case, size/color adjustment is applied.

pricing:q1,95,910:, ;10.00 ==size:pricing, ==color:pricing:common

Removing the comma from the end of the fallback string stops color/size lookup if it reaches that point. If a
guantity price was found, then size and color are chained.

pricing:q1,95,910:, ;products:list_price, ==size:pricing, ==color:pricing
The value of the database column list_price is used as a fallback instead of the fixed 10.00 value. The

above value might be a nice one to use as the default for a typical retail catalog that has items with colors al
sizes.

2.4. PriceBreaks, discounts, and PriceAdjustment

There are several ways that Interchange can modify the price of a product during normal catalog operation.
Several of them require that the pricing.asc file be present, and that you define a pricing database. You do t
by placing the following directive in catalog.cfg:

Database pricing pricing.asc 1

NOTE: PriceAdjustment is slightly deprecated by CommonAdjust, but will remain in use at least through the
end of Version 3 of Interchange.

2.4. PriceBreaks, discounts, and PriceAdjustment 13

Interchange Documentation (Full)

Configurable directives and tags with regard to pricing:

» Quantity price breaks are configured by means of the PriceBreaks and MixMatch directives. They
require a field named specifically price in the pricing database. The price field contains a
space-separated list of prices that correspond to the quantity levels defined in the PriceBreaks
directive. If quantity is to be applied to all items in the shopping cart (as opposed to quantity of just
that item) then the MixMatch directive should be set to Yes.

« Individual line-item prices can be adjusted according to the value of their attributes. See
PriceAdjustment and CommonAdjust. The pricing database must be defined unless you define the
CommonAdjust behavior.

 Product discounts for individual products, specific product codes, all products, or the entire order car
be configured with the [discount ...] tag. Discounts are applied on a per—user basis —— you
can gate the discount based on membership in a club or other arbitrary means. See Product Discour

For example, if you decided to adjust the price of T—shirt part number 99-102 up 1.00 when the size is extre
large and down 1.00 when the size is small, you would have the following directives defined in <catalog.cfg:

Database pricing pricing.asc 1
UseModifier size
PriceAdjustment size

To enable automatic modifier handling, you define a size field in products.txt:

code description price size
99-102 T-Shirt 10.00 S=Small, M=Medium, L=Large*, XL=Extra Large

You would place the proper tag within your [item-list] on the shopping—basket or order page:
[item-accessories size]
In the pricing.asc database source, you would need:

code S XL
99-102 -1.00 1.00

If you want to assign a price based on the option, precede the number with an equals sign:

code S M L XL
99-102 =9.00 =10 =10 =11

IMPORTANT NOTE: Price adjustments occur AFTER quantity price breaks, so the above would negate
anything set with the PriceBreaks directive/option.

Numbers that begin with an equals sign (=) are used as absolute prices and are interpolated for Interchange
tags first, so you can use subroutines to set the price. To facilitate coordination with the subroutine, the
session variables item_code and item_quantity are set to the code and quantity of the item being

evaluated. They would be accessed in a global subroutine with $Vend::Session—>{item_code} and
$Vend::Session—>{item_quantity}.

The pricing information must always come from a database because of security.

2.4. PriceBreaks, discounts, and PriceAdjustment 14

Interchange Documentation (Full)

2.5. Item Attributes

Interchange allows item attributes to be set for each ordered item. This allows a size, color, or other modifie
to be attached to a common part number. If multiple attributes are set, then they should be separated by
commas. Previous attribute values can be saved by means of a hidden field on a form, and multiple attribute
for each item can be stacked on top of each other.

The configuration file directive UseModifier is used to set the name of the modifier or modifiers. For example

UseModifier size,color
will attach both a size and color attribute to each item code that is ordered.

IMPORTANT NOTE: You may nhot use the following names for attributes:
item group quantity code mv_ib mv_mi mv_si

You can also set it in scratch with the mv_UseModifier scratch variable —— [set

mv_UseModifier]size color[/set] has the same effect as above. This allows multiple options to

be set for products. Whichever one is in effect at order time will be used. Be careful, you cannot set it more
than once on the same page. Setting the mv_separate_items or global directive Separateltems places
each ordered item on a separate line, simplifying attribute handling. The scratch setting for
mv_separate_items has the same effect.

The modifier value is accessed in the [item-list] loop with the [item—maodifier attribute] tag,
and form input fields are placed with the [modifier—-name attribute] tag. This is similar to the way
that quantity is handled, except that attributes can be "stacked" by setting multiple values in an input form.

You cannot define a modifier name of code or quantity, as they are already used. You must be sure that no
fields in your forms have digits appended to their names if the variable is the same name as the attribute na
you select, as the [modifier—-name size] variables will be placed in the user session as the form

variables sizeO0, sizel, size2, etc.

You can use the [loop arg="item item item"] list to reference multiple display or selection fields

for modifiers, or you can use the built-in [PREFIX-accessories ...] tags available in most

Interchange list operations. The modifier value can then be used to select data from an arbitrary database ft
attribute selection and display.

Below is a fragment from a shopping basket display form which shows a selectable size with "sticky" setting
Note that this would always be contained within the [item_list] [/item-list] pair.

<SELECT NAME="[modifier—-name size]">
<OPTION [selected [modifier-name size] S]> S
<OPTION [selected [modifier-name size] M]> M
<OPTION [selected [modifier—-name size] L]> L
<OPTION [selected [modifier—name size] XL]> XL
</SELECT>

It could just as easily be done with a radio button group combined with the [checked ...] tag.

Interchange will automatically generate the above select box when the [accessories <code size]> or
[item—accessories size] tags are called. They have the syntax:

2.5. Item Attributes 15

Interchange Documentation (Full)
[item_accessories attribute*, type*, field*, database*, name*, outboard*]
[accessories code attribute*, type*, field*, database*, name*, outboard*]
code
Not needed for item-accessories, this is the product code of the item to reference.

attribute

The item attribute as specified in the UseMadifier configuration directive. Typical are size or color.

type
The action to be taken. One of:

select Builds a dropdown <SELECT> menu for the attribute.
NOTE: This is the default.

multiple Builds a multiple dropdown <SELECT> menu for the
attribute. The size is equal to the number of
option choices.

display Shows the label text for *only the selected option*.
show Shows the option choices (no labels) for the option.
radio Builds a radio box group for the item, with spaces

separating the elements.

radio nbsp Builds a radio box group for the item, with
separating the elements.

radio left n Builds a radio box group for the item, inside a
table, with the checkbox on the left side. If "n"
is present and is a digit from 2 to 9, it will align
the options in that many columns.

radio right n Builds a radio box group for the item, inside a
table, with the checkbox on the right side. If "n"
is present and is a digit from 2 to 9, it will align
the options in that many columns.

check Builds a checkbox group for the item, with spaces
separating the elements.

check nbsp Builds a checkbox group for the item, with
separating the elements.

check left n Builds a checkbox group for the item, inside a
table, with the checkbox on the left side. If "n"
is present and is a digit from 2 to 9, it will align
the options in that many columns.

check right n Builds a checkbox group for the item, inside a
table, with the checkbox on the right side. If "n"
is present and is a digit from 2 to 9, it will align
the options in that many columns.

2.5. Item Attributes

16

Interchange Documentation (Full)

The default is 'select’, which builds an HTML select form entry for the attribute. Also recognized is 'multiple’,
which generates a multiple—selection drop down list, 'show', which shows the list of possible attributes, and
'display', which shows the label text for the selected option only.

field

The database field name to be used to build the entry (usually a field in the products database). Defaults to
field named the same as the attribute.

database
The database to find field in, defaults to the first products file where the item code is found.
name

Name of the form variable to use if a form is being built. Defaults to mv_order_attribute —— i.e. if the
attribute is size, the form variable will be named mv_order_size.

outboard

If calling the item—accessories tag, and you wish to select from an outboard database, you can pass the key
use to find the accessory data.

When called with an attribute, the database is consulted and looks for a comma-separated list of attribute
options. They take the form:

name=Label Text, name=Label Text*
The label text is optional —— if none is given, the name will be used.

If an asterisk is the last character of the label text, the item is the default selection. If no default is specified,
the first will be the default. An example:

[item_accessories color]

This will search the product database for a field named "color". If an entry "beige=Almond, gold=Harvest
Gold, White*, green=Avocado" is found, a select box like this will be built:

<SELECT NAME="mv_order_color">
<OPTION VALUE="beige">Almond
<OPTION VALUE="gold">Harvest Gold
<OPTION SELECTED>White
<OPTION VALUE="green">Avocado
</SELECT>

In combination with the mv_order_item and mv_order_quantity variables this can be used to allow
entry of an attribute at time of order.

If used in an item list, and the user has changed the value, the generated select box will automatically retair
the current value the user has selected.

2.5. Item Attributes 17

Interchange Documentation (Full)

The value can then be displayed with [item-modifier size] on the order report, order receipt, or any
other page containing an [item-list].

2.6. Product Discounts

Product discounts can be set upon display of any page. The discounts apply only to the customer receiving
them, and are of one of three types:

1. A discount for one particular item code (key is the item—code)

2. A discount applying to all item codes (key is ALL_ITEMS)

3. A discount for an individual line item (set the mv_discount attribute
with embedded Perl)

4. A discount applied after all items are totaled
(key is ENTIRE_ORDER)

The discounts are specified via a formula. The formula is scanned for the variables $g and $s, which are
substituted for with the item quantity and subtotal respectively. The variable $s is saved between iterations,
the discounts are cumulative. In the case of the item and all items discount, the formula must evaluate to a
new subtotal for all items of that code that are ordered. The discount for the entire order is applied to the ent
order, and would normally be a monetary amount to subtract or a flat percentage discount.

Discounts are applied to the effective price of the product, including any quantity discounts or price
adjustments.

To apply a straight 20% discount to all items:
[discount ALL_ITEMS] $s * .8 [/discount]

or with named attributes:
[discount code=ALL_ITEMS] $s * .8 [/discount]

To take 25% off of only item 00-342:
[discount 00-342] $s * .75 [/discount]

To subtract $5.00 from the customer's order:
[discount ENTIRE_ORDER] $s - 5 [/discount]

To reset a discount, set it to the empty string:

[discount ALL_ITEMS][/discount]

Perl code can be used to apply the discounts, and variables are saved between items and are shared with t
[calc] tag. This example gives 10% off if two items are ordered, with 5% more for each additional up to a
maximum of 30% discount:

[calc]
[item—list]
$totalg{"[item—code]"} += [item—quantity];
[/item-list]
return ",

2.6. Product Discounts 18

Interchange Documentation (Full)

[/calc]

[item—list]
[discount code="[item-code]"]
return ($s) if $totalg{"[item-code]"} == 1;
return ($s * .70) if $totalg{"[item—code]"} > 6;
return ($s * (1 — 0.05 * $totalqg{"[item—code]'}));
[/discount]
[/item-list]

Here is an example of a special discount for item code 00—-343 which prices the second one ordered at 1 ce

[discount 00-343]
return $s if $q == 1;
my $p = $s/$q;

my $t = ($q - 1) * $p;
$t .=0.01;

return $t;

[/discount]

If you want to display the discount amount, use the [item—discount] tag.

[item—list]
Discount for [item—code]: [item—discount]
[/item~—list]

Finally, if you want to display the discounted subtotal, you need to use the [calc] capability:

[item—list]

Discounted subtotal for [item—code]: [currency][calc]
[item—price] * [item—quantity]
[/calc][/currency]

[/item~—list]

2.6. Product Discounts 19

3. Taxing

Interchange allows taxing in a number of ways.
Simple salestax.asc table

The SalesTax directive is set to a form field or fields for user input, and those form fields are used look up th
tax rate in salestax.asc.

Fly tax

Another simple tax method. A series of Interchange Variable settings are read to develop a salestax rate for
one or a few localities, usually a state in the US.

Salestax multi —— VAT taxing

The country andstate tables are used to develop complex VAT or salestax rate calculations based on countn
and state, possibly with different rates based on product type.

Levies —— multiple levels of tax

Using thelevies setting and theevy structure, any or all of the above methods is used to implement one or
more taxes.

3.1. Sales Tax —— simple salestax.asc table

Interchange allows calculation of sales tax on a straight percentage basis, with certain items allowed to be
tax—exempt. To enable this feature, the directive SalesTax is initialized with the name of a field (or fields) on
the order form. Commonly, this is zipcode and/or state:

SalesTax zip,state

This being done, Interchange assumes the presence of a file salestax.asc, which contains a database with
the percentages. Each line of salestax.asc should be a code (again, usually a five—digit zip or a two letter
state) followed by a tab, then a percentage. Example:

DEFAULT 0.0
45056 .0525
61821 .0725
61801 .075
IL .0625
OH .0525
VAT .15
WA .08

Based on the user's entry of information in the order form, Interchange will look up (for our example SalesTz
directive) first the zip, then the state, and apply the percentage to the SUBTOTAL of the order. The subtotal
will include any taxable items, and will also include the shipping cost if the state/zip is included in the
TaxShipping directive. It will add the percentage, then make that available with the [salestax] tag for

display on the order form. If no match is found, the entry DEFAULT is applied —— it is normally zero.

3. Taxing 20

Interchange Documentation (Full)

If business is being done on a national basis, it is now common to have to collect sales tax for multiple state
If you are doing so, it is possible to subscribe to a service which issues regular updates of the sales tax
percentages —— usually by quarterly or monthly subscription. Such a database should be easily converted tc
Interchange format —— but some systems are rather convoluted, and it will be well to check and see if the
program can export to a flat ASCII file format based on zip code.

If some items are not taxable, then you must set up a field in your database which indicates that. You then
place the name of that field in the NonTaxableField directive. If the field for that item evaluates true on a

yes—ho basis (i.e. is set to yes, y, 1, or the like), sales tax will not be applied to the item. If it evaluates false,
it will be taxed.

If your state taxes shipping, use the TaxShipping directive. Utah and Nevada are known to tax shipping ——
there may be others.

If you want to set a fixed tax for all orders, as might occur for VAT in some countries, just set the SalesTax

directive to a value like tax_code, and define a variable in the user session to reflect the proper entry in the
salestax.asc file. To set it to 15% with the above salestax.asc file, you would put in a form:

<INPUT TYPE=hidden NAME=tax_code VALUE="VAT">

or to do it without submitting a form:

[perl] $Values—>{tax_code} = 'VAT'; return; [/perl]

3.2. Fly tax

The[fly—=tax] tag is placed in the DEFAULT setting of salestax.asc, and the variables TAXAREA, TAXRATE,
and TAXSHIPPING are used to build the rates.

TAXAREA

A space-separated or comma-seperated list of states to apply tax to. Not needed for anything in the
calculation, it is used to build the Ul list of states to tax.

TAXRATE

An Interchange accessory-list style of value, with the format
XX=N.NN, XX=N.NN

where XX is the two-letter state code and N.NN is the tax rate in percent. To apply a tax of 7.25% for lllinois
and 5.5% for Nevada, you would use:

IL=7.25, NV=5.5
TAXSHIPPING

A space- or comma-separated list of states where shipping is taxed. For the above example, if Nevada tax
shipping and lllinois did not, you would make TAXSHIPPING equal to "NV".

The Salestax Directive

3.2. Fly tax 21

Interchange Documentation (Full)

To set the field that is used for the state code, you use the standard Intealasgex directive. It would
almost always be set to state.

3.3. Salestax "multi" —— VAT taxing

If the SalesTax directive is set to "multi”, then the type of tax is read frooothwry table. To see the tax
type in force for the UK, you can place in a page:

[data table=country col=tax key="UK"].

NOTE: We mention the "country" table above. In actual practice, most everything is configurable for variable
name and field name via different Variable settings. They are:

MV_COUNTRY_TABLE Table for country info (default "country”)
MV_COUNTRY_FIELD Form field determining country (default "country")
MV_COUNTRY_TAX_FIELD Table column for country—-wide tax (default "tax")
MV_STATE_TABLE Table for state/province info (default "state™)
MV_STATE_FIELD Form field determining state/province (default "state")
MV_STATE_TAX_FIELD Table column for state-wide tax (default "tax")
MV_TAX_TYPE_FIELD Table column enumerating tax types (default "tax_type")
MV_TAX_CATEGORY_FIELD Table column for product type (default tax_category)

Below, we refer to the tables, columns, and fields by their default names.

The first lookup is done in table country based on the user input of country (i.e. [value country]).
The tax field is read and one of the following is done:

1. If no string is found, tax returns 0.
2. If string "simple:XX" is found, uses [fly—tax] with the area specifed in XX.
3. If string "state" is found, does a re—lookup with
select tax from state where country = country and state = state
and value is applied as below.
4. If just digits are found, rate applied directly —— i.e. "0.05"
5. If N.NN% is found, applied as percentage.

6. If category = N.NN%, default = N.NN% is found, the tax_category field in the products
table is used to determine tax basis. If no tax_category is found for the product, default rate is used.

This product data

sku price tax_category
0528003 10.00 tools
0528004 20.00 food

with this country and state data:

code name tax

3.3. Salestax "multi" —— VAT taxing 22

Interchange Documentation (Full)

us U.S.A. state
JP Japan tools=10%, default=15%

code country state name tax

0001 US IL lllinois 6.5%

0002 US OH Ohio default = 5.5%, food = 1%
0003 US AZ Arizona

Will yield tax for one each of 0s28003 and 0528004 of:

Japan $4.00
US/IL $1.95
US/OH $0.75
US/AZ $0.00

3.3. Salestax "multi" —— VAT taxing

4. THE CHECKOUT PROCESS
4.1. Advanced Multi-level Order Pages

An unlimited number of order checking profiles can be defined with the OrderProfile directive, or by defining
order profiles in scratch variables. This allows a multi-level ordering process, with checking for format and
validity at every stage.

To custom—configure the error message, place it after the format check requirement.

Specifications take the form of an order page variable (like name or address), followed by an equals sign an
one of five check types:

required

A non-blank value is required

mandatory

Must be non-blank, and must have been specified on this form, not a saved value from a previous form
phone

The field must look like a phone number, by a very loose specification allowing numbers from all countries
phone_us

Must have US phone number formatting, with area code

state

Must be a US state, including DC and Puerto Rico.

province

Must be a Canadian province or pre—1997 territory.

state_province

Must be a US state or Canadian province.

zip

Must have US postal code formatting, with optional ZIP+4. Also called by the alias us_postcode.
ca_postcode

Must have Canadian postal code formatting. Checks for a valid first letter.

4. THE CHECKOUT PROCESS 24

Interchange Documentation (Full)

postcode

Must have Canadian or US postal code formatting.

true

Field begins with y, 1, or t (Yes, 1, or True) — not case sensitive

false

Field begins with n, 0, or f (No, 0, or False) — not case sensitive

email

Rudimentary email address check, must have an '@' sign, a hame, and a minimal domain
regex

One or more regular expressions (space—separated) to check against. To check that all submissions of the
"foo" variable have "bar" at the beginning, do:

foo=regex *bar
You can add an error message by putting it in quotes at the end:
foo=regex ~bar "You must have bar at the beginning of this"

You can require that the value not match the regex by preceding the regex with a ! character (and no space
afterwards):

foo=regex "bar "You may not have bar at the beginning!"

length

A range of lengths you want the input to be:
foo=length 4-10

That will require foo be from 4 to 10 characters long.

unique

Tests to see that the value would be a unique key in a table:
foo=unique userdb Sorry, that username is already taken

filter

Runs the value through an Interchange filter and checks that the returned value is equal to the original value

foo=filter entities Sorry, no HTML allowed

4. THE CHECKOUT PROCESS 25

Interchange Documentation (Full)

To check for all lower—case characters:

foo=filter lower Sorry, no uppercase characters
Also, there are pragmas that can be used to change behavior:
&charge

Perform a real-time charge operation. If set to any value but "custom", it will use Interchange's CyberCash
routines. To set to something else, use the value "custom ROUTINE". The ROUTINE should be a GlobalSul
which will cause the charge operation to occur — if it returns non-blank, non-zero the profile will have
succeeded. If it returns 0 or undef or blank, the profile will return failure.

&credit_card

Checks the mv_credit_card_* variables for validity. If set to "standard", it will use Interchange's
encrypt_standard_cc routines. This destroys the CGlI value of mv_credit_card_number —— if you don't
want that to happen (perhaps to save it for sending to CyberCash) then add the word keep on the end.
Example:

Checks credit card number and destroys number after encryption
The charge operation can never work

&credit_card=standard
&charge=custom authorizenet

Checks credit card number and keeps number after encryption
The charge operation can now work

&credit_card=standard keep
&charge=custom authorizenet

You can supply your own check routine with a GlobalSub:

&credit_card=check_cc

The GlobalSub check_cc will be used to check and encrypt the credit card number, and its return value will
be used to determine profile success.

&fail
Sets the mv_failpage value.
&fail=page4
If the submit process succeeds, the user will be sent to the page page4.
&fatal
Set to '&fatal=yes' if an error should generate the error page.

&final

4. THE CHECKOUT PROCESS 26

Interchange Documentation (Full)

Set to '&final=yes' if a successful check should cause the order to be placed.
&update

Set to '&update=yes' if a successful check should cause the variable to be copied from the CGI space to the
Values space. This is like [update values] except only for that variable.

This is typically used when using a mv_form_profile check so that a failing check will not cause all

values to be reset to their former state upon returning to the form.

&return

Causes profile processing to terminate with either a success or failure depending on what follows. If it is
non-blank and non-zero, the profile succeeds.

Success)
&return 1

Failure :\
&return O

Will ignore the &fatal pragma, but &final is still in effect if set.
&set

Set a user session variable to a value, i.e. &set=mv_email [value email]. This will not cause failure
if blank or zero.

&setcheck

Set a user session variable to a value, i.e. &set=mv_email [value email]. This will cause failure if

set to a blank or zero. It is usually placed at the end after a &fatal pragma would have caused the process tc
stop if there was an error —— can also be used to determine pass/fail based on a derived value, as it will cau
failure if it evaluates to zero or a blank value.

&success

Sets the mv_successpage value. Example:

&success=page5
If the submit process succeeds, the user will be sent to the page page5.

As an added measure of control, the specification is evaluated for the special Interchange tags to provide
conditional setting of order parameters. With the [perl]/perl] capability, quite complex checks can be
done. Also, the name of the page to be displayed on an error can be set in the mv_failpage variable.

The following file specifies a simple check of formatted parameters:

name=required You must give us your name.
address=required Oops! No address.
city=required

state=required

zip=required

4. THE CHECKOUT PROCESS 27

Interchange Documentation (Full)

email=required

phone_day=phone_us XXX-XXX-XXXX phone—-number for US or Canada
&fatal=yes

email=email Email address missing the domain?

&set=mv_email [value email]

&set=mv_successpage ord/shipping

The profile above only performs the &set directives if all of the previous checks have passed —— the
&fatal=yes will stop processing after the check of the email address if any of the previous checks failed.

If you want to place multiple order profiles in the same file, separate them with __ END___, which must be on
line by itself.

User—defined check routines can be defined in a GlobalSub:

GlobalSub <<EOF
sub set_up_extra_check {
BEGIN {
package Vend::Order;
sub _pt_postcode {
$ref is to Vend::Session—>{'values'} hash
$var is the passed name of the variable
$val is current value of checked variable
my($ref, $var, $val) = @_;

if ($ref->{country} =~ /N(PT|portugal)$/i) {
return $val =~ /Md\d\d\d$/ ?
(1, $var, ") : (undef, $var, "not a Portugese postal code");

}
else {
return (1, $var, ");
}
}
}
}
EOF

Now you can specify in an order profile:

postcode=pt_postcode

Very elaborate checks are possible. There must be an underscore preceding the routine name. The return v
of the subroutine should be a three—element array, consisting of:

1.the pass/fail (‘'1' or 'undef) status of the check;

2.the name of the variable which was checked,;

3. a standard error message for the failure, in case a custom one has not been specified in the order
profile.

The latter two elements are used by the [error] tag for on—screen display of form errors. The checkout
page of the Foundation demo includes examples of this.

4.2. Simple Order Report File

The simple order report file, "report”, defines the layout of the order report which gets mailed on the

4.2. Simple Order Report File 28

Interchange Documentation (Full)

completion of the order. For example,

Order Date: $date

Name: $name
Email address: $email

Shipping address: $addr
Town, State, Zip: $town, $state $zip
Country: $country

Any input field from the order page can be included using the dollar sign notation.

Interchange defines some values for use in the search form —— they begin with mv_ and are automatically
ignored.

4.3. Fully—configurable Order Reports

You can specify a fully—configurable order report by setting the hidden field "mv_order_report" to a legal
Interchange page. This page will be interpolated with all Interchange tags before sending by email. The orde
number as set by backend ordering is in the variable mv_order_number, and available for your use.

You could if you wish include HTML in the file, which will be interpreted by many mailers, but you can
choose to use standard ASCII format. An example report is provided in the demo file
<pages/ord/report.html>.

4.4. Order Receipts

The file can of course be configured with all Interchange tags, and will be interpolated for the ordered items
before they are deleted from the user session. You can set the default receipt with the receipt key in
SpecialPage. If using order Routes, as in the foundation demo, you set it with the receipt key to

Route.

4.5. The Order Counter

An order counter can be enabled if the OrderCounter directive is set to a file name. An incrementing count c
all orders will be kept and assigned as orders are placed. By default, the number starts at 0, but you can edi
the file and change the default starting number at any time.

This capability is made possible by the File::CounterFile module, available (as a part of the fine libwww
modules) at the same place you got Interchange. It is included with the distribution.

4.6. Customer Input Fields

On the order (or shopping basket) page, by default order.html, you will have a number of input fields allowin
the customer to enter information such as their name and address. You can add more fields simply by puttir
more input elements on the order.html page, and the information will automatically be included in the order
report. Input elements should be written in this way:

<input type="text" name="town" value="[value town]" size=30>

4.3. Fully—configurable Order Reports 29

Interchange Documentation (Full)

Choose a name for this input field such as "email" for an email address. Set the name attribute to the name
you have chosen.

The value attribute specifies the default value to give the field when the page is displayed. Because the
customer may enter information on the order page, return to browsing, and come back to the order page, yo
want the default value to be what was entered the first time. This is done with the [value var] element,

which returns the last value of an input field. Thus,

value="[value name]"
will evaluate to the name entered on the previous order screen, such as:
value="Jane Smith"
which will be displayed by the browser.
The size attributes specifies how many characters wide the input field should be on the browser. You do not

need to set this to fit the longest possible value since the browser will scroll the field, but you should set it
large enough to be comfortable for the customer.

Copyright 2002-2004 Interchange Development Group. Copyright 2001-2002 Red Hat, Inc. Freely
redistributable under terms of the GNU General Public License. line:

4.3. Fully—configurable Order Reports 30

Interchange + CVS HOWTO

Interchange + CVS HOWTO

31

5. Introduction

5.1. Preamble

Copyright 2001-2003 Dan Browning <dan.browning@kavod.com>. This document is freely redistributable
under terms of the GNU General Public License.

5.2. Purpose

The purpose of this document is to help others take advantage of CVS and Interchange together to increase
guality of their programming, whether they are sole developers or part of a large team of programmers,
graphic artists, and HTML design gurus. Portions of it apply to general CVS setup and use, but it is geared
toward the average developer using Interchange to implement an e—commerce website.

5.3. Audience

| intend for this document to be useful to those who are not yet familiar with CVS as well as those who are. |
you already know how to setup a pserver then you might just skim chapter 2 ("Setup CVS"), or skip it all
together.

In addition, | have tried to write at a technical level that would be on par with what | perceive to be the

average Interchange user that participates on the interchange—users mailing list. It is assumed that the read
can and already has setup Interchange and the template catalog (e.g. Foundation) is working correctly.

5.4. Contact the author

If you find any spelling errors, technical slip—ups, mistakes, subliminal messages, or if you wish to send
feedback, critique, remarks, comments, or if you wish to contribute examples, instructions for alternative
platforms, chapters, or other material, please do so.

The preferred method of submitting changes is in the form of a context diff against the SDF source file
(ic_cvs.sdf). Please address your correspondence to:

Dan Browningdan.browning@kavod.com

5.5. The advantages of using CVS

CVS is a very useful tool and can help you in your development, no matter if you are an independant
developer or are part of a team of developers.

* What is CVS all about?
« What are its advantages?

The official CVS websitehttp://www.cvshome.org/new_users.html) has more detailed answers to these
guestions, but here are some brief points of interest.

5. Introduction 32

mailto:dan.browning@kavod.com
http://www.cvshome.org/new_users.html

Interchange Documentation (Full)

« Checkout "historic" points in time or milestones in a project, for example when an e-commerce site
went "live" or before a major branch in the code.

* Revert to older versions of a file, directory, or an entire website.

« Branching releases. Concurrently develop an unstable development version as well as fix bugs in th
stable production version.

» Multiple developers can work on the same catalog and even the same file at the same time. (For mo
information about how multiple simultaneous writes are merged and conflicts resolved, see the CVS
docs in theResources Appendix).

» CVS is better than ftp for file transfer, because it automatically downloads only changed files, and
even then, only the portion of the file that has changed (using patches).

« CVS can automatically merge two simultaneous writes to the same file by different developers.

« Allows one to keep track of the changes that have been made over time (many release managers
repackage CVS commit logs into WHATSNEW, HISTORY, and/or NEWS files).

5.6. How to use this document

There are many potential uses of CVS as it applies to Interchange. In fact, there are as many unique ways t
use CVS as there are unique developers. This document only covers some of the ways, including basic and
useful techniques to get started using CVS. For the intents of the average web developer using IC for a B2C
e—commerce site, I've identified a few of the possible uses:

Simple

* One server

» One catalog

* One CVS module
* One branch

Medium

* One server

» Two catalogs (e.g., one is live, one is development)
* Two CVS modules

» Separate development and live branches

Complex/Custom

» Multiple servers (e.g., developers' servers, staging servers, and live servers)
» Multiple catalogs

« Multiple CVS modules

» Multiple branches

¢ Custom setup

This document attempts to cover the simple well, explain many aspects of the medium, and hopefully give
you the background you need if you decide to setup your own complex development environment.

5.6. How to use this document 33

6. Setup CVS

6.1. Assumptions

Here are some of the assumptions that | make that apply to various parts of the rest of this document:

* Red Hat Linux 7.x

« Interchange installed (RPM or tarball)

« Default Interchange tarball installation directory paths (adjust for your environment)
» Template catalog setup and working

Note: | will assume "foundation” for the catalog name and directory paths, but it should be just as easy to us
this document with your own catalog by mentally transposing the names and paths.

There shouldn't be any reason why you could not do everything | mention here on other Linux distributions,
Unices or Windows (using cygwin). However, my statements will reflect Red Hat Linux 7.x. Additionally,
Red Hat Linux 6.x is for the most part the same as 7.x, except for the difference of using inetd instead of
xinetd to setup pserver.

6.2. Install CVS

This is the easy part. For Red Hat Linux systems, download the CVS rpms and install them. You can searcr
for rpms for your system usirgtp://www.rpmfind.net.

Create the user and group that will administrate the Interchange repository. For this document, it will be the
interch user, (which was setup during the installation of Interchange). But if you understand the mechanics ¢
Unix users/groups, then you can use whatever username and group scheme you prefer. For example, some
create a cvs user and add it to the same group that interchange uses (e.g. interch), or add the Interchange t
and catalog owner to its group or vice-versa. The integration of Interchange and CVS in the latter portion of
this document will require that the CVS user can write to the catalog directory.

6.3. Create the CVS repository directory

You will need to create a repository directory such as /home/interch/rep, which is used here and in the
rest of the document, but it can be any directory you desire, and must be owned by the cvs user.

mkdir /homef/interch/rep

6.4. Setup environment variables

The CVSROOT environment variable can be setup for your user (in ~/.bashrc or ~/.profile, or for all
users in /etc/profile.

~/.profile:

export CVSROOT=${HOME}/rep

6. Setup CVS 34

http://www.rpmfind.net

Interchange Documentation (Full)

6.4.1. .cvsrc

We recommend these default options for CVS.

~/.cvsrc:

cvs —(q

diff —u
update -Pd
checkout -P

This directs CVS to (1) automatically compress all data communicated between you and our server (saving
bandwidth), and be quieter; (2) show context—sensitive diffs; (3) prune empty directories and create any nev
directories added to the repository since your checkout; and (4) prune empty directories during your
checkouts.

Note: You will need to logout/login for the profile changes to take effect.

6.5. Initialize the repository

Initialize the repository as the CVS user, which is interch for this document.

cvs —d /homel/interch/rep init

6.6. CVS Authentication

6.6.1. Background

Authentication is done in CVS through the $CVSROOT/CVSROOT/passwd file. It can be easily
manipulated through some of the CVS administration tools that are available. An alternate authentication
method is ssh, which requires no extra setup on the server side.

6.6.2. CVS administration tools

« http://freshmeat.net/projects/cvsadmin/
« http://freshmeat.net/projects/cvspadm/

| recommend cvsadmin, but there are also a variety of manual methods that can be used in the absence of

tools, one of which involves copying the system shadow file and modifying it for use by CVS. For more
information on this manual method, see the Red Hat CVS pserver setup guide by Michael Amorose

(http://www.michael-amorose.com/cvs/).
6.6.3. Setup authentication using the cvsadmin tool

You can find a tarball to install on your system using the above address, but here is the address of a recent
RPM package of the version. This package is intended for Mandrake systems, but is compatible with Red H
Linux 7.1:

* ftp://rpmfind.net/linux/Mandrake/9.0/contrib/RPMS/cvsadmin—1.0.2-1mdk.i586.rpm

6.4.1. .cvsrc 35

http://freshmeat.net/projects/cvsadmin/
http://freshmeat.net/projects/cvspadm/
http://www.michael-amorose.com/cvs/
ftp://rpmfind.net/linux/Mandrake/9.0/contrib/RPMS/cvsadmin-1.0.2-1mdk.i586.rpm

Interchange Documentation (Full)

After installing, create a password file (touch $CVSROOT/CVSROOT/passwd, touch
$CVSROOT/CVSROOT/users), and execute cvsadmin add <usernames>.

6.7. Setup CVS modules

Note: From this point on, assume that all commands are executed as the CVS user (e.g. interch), unless
otherwise specified.

A module is CVS is like the concept of a "project”, where each module has its own branches, trees, and oth
features.

6.7.1. Add your project to the modules configuration file

The format of the modules file is explained in detail in the CVS documentation, here is the simplest way to
use it. First you will need to checkout your CVSROOT directory, then modify and commit the 'modules’ file.

cvs co CVSROOT
cd CVSROOT

modules:

<Module name><TAB><Module Directory>

The module name can be whatever you want, and the module directory is what we will create later under /re
We'll want a module for the template catalog (foundation). For example:

foundation foundation

6.7.2. Create the module directory

This is the directory that is referred to in the CVSROOT/modules file we just modified.

mkdir /rep/foundation

6.8. Setup binary file types

This isn't necessary if you aren't going to manage any binary files (e.g. if you plan on excluding your images
directory). But | recommend including it. The following is an example including many binary file types (by
extension) used in web development.

/rep/CVSROOT/cvswrappers:

*avi —k'b'-m'COPY'
*.doc -k'b'-m'COPY'
*.exe —-k'b'-m'COPY’
*gif —k'b'-m'COPY’
*gz -k'b'-m'COPY'
*hgx -k'b'-m'COPY'
*jar —-k'b'-m 'COPY"
*jpeg -k 'b'-m 'COPY’
*jpg -k'b'-m'COPY'

6.7. Setup CVS modules 36

Interchange Documentation (Full)

*mov -k'b'-m'COPY'
*mpg -k'b'-m'COPY’
*pdf -k'b'-m'COPY"
*png -k'b'-m'COPY’
*ppt —-k'b'-m'COPY’
*sit —k'b'-m 'COPY"
*swf —k'b'-m 'COPY"
*tar —-k'b'-m 'COPY’
*tgz -k 'b'-m'COPY'
*tif —k'b'-m 'COPY"
*tiff -k 'b' —-m 'COPY"
*xbm -k'b'-m 'COPY'
*xls -k'b'—m 'COPY'
*zip —-k'b'-m'COPY’

6.8.1. Commit changes

Remember to commit the changes you made to 'modules' and 'cvswrappers'.

cvs commit —-m "Update modules and binary types" modules cvswrappers

6.9. Setup the CVS pserver

You will likely need to be root to do this, and there are lots of guides on the Internet for setting up a CVS
pserver, hopefully you wont have any trouble doing it on your particular operating system. Besdiees
Appendix for more information.

6.9.1. Setup pserver in Red Hat Linux 7.x using xinetd.

For Red Hat Linux 7.x, edit /etc/xinetd.d/cvspserver (create a new one if none exists). The

following works for me, but customization may be required for your environment (see the next section below
for an inetd-based system example). This also must be done as root. Remember to substitue /home/interch
with your repository directory below.

su - root
/etc/xinetd.d/cvspserver:

service cvspserver
{
disable = no
socket_type = stream
protocol = tcp
wait =no
user =root
server = /usr/bin/cvs
server_args = —f ——allow-root=/home/interch/rep pserver

}
Now, restart xinetd for the changes to take effect.

service xinetd restart

6.8.1. Commit changes 37

Interchange Documentation (Full)

6.9.2. Setup pserver in inetd—based systems.

For inetd-based systems such as Red Hat Linux 6.2, make sure that the following files are setup according|

letc/services:

cvspserver 2401/tcp
N:/etc/inetd.conf:

cvspserver stream tcp nowait \
root /usr/sbin/tcpd /usr/bin/cvs \
—-allow-root=/home/interch/rep pserver

6.9.3. Testing your pserver

At this point, you should be able to use a CVS client to use your pserver and execute all the same commant
that you can locally (which we tested before). You may wish to take advantage of a graphical CVS client,
which can be particularly helpful in leveling the learning curve.

Your pserver connection string will something along the lines of:
:pserver:<USERNAME>@<SERVER>:/home/interch/rep

See theResources Appendix for links to some graphical CVS tools.

6.9.2. Setup pserver in inetd—based systems. 38

7. Import your Interchange catalog into CVS

7.1. Configuring your catalog

Eventually, we will import your catalog into the CVS repository, but first we need to do some work with a
temporary copy of the catalog so we can get it into shape for importing.

Note: From here on, assume the use of the Interchange user, such as interch, unless otherwise noted.

su — interch

If you installed via RPM:

service interchange stop

If you installed via tarball (default path):

/usr/local/interchange/bin/interchange ——stop

7.2. Remove old CVS folders

If, for any reason, you already have CVS/ directories in your catalog, they must be removed because they
might interfere with the new CVS setup. You might use the following find command, which will find any
folders named CVS in the current directory and remove them.

sNote:You should make a backup of the catalog directory before you do this.

#backup catalog folder first
tar czf ~/foundation_backup.tgz /var/lib/interchange/foundation

#get rid of any old CVS folders —— (BE CAREFUL!)
cd /var/lib/interchange/foundation
find . -name CVS —exec rm -Rf {} \;

7.3. Create a working copy of your catalog

A working copy of your catalog is necessary to get it into shape for use with CVS. The following command
creates a copy in the /tmp directory.

cp —a /var/lib/interchange/foundation /tmp/import_foundation
cd /tmp/import_foundation

7.4. Streamline your catalog for CVS

7.4.1. Considerations about what to import into CVS

From your working directory (/tmp/import_foundation), decide which files will be in the CVS
repository, and which will not. While it is entirely possible to import the entire catalog into the repository

7. Import your Interchange catalog into CVS 39

Interchange Documentation (Full)

unchanged, | usually prefer to doctor my directories up before letting them into my repository because of
several reasons:

» Will the file be modified by another source?

For example, /etc/order.number is modified by Interchange when run. It is recommended that the
CVSIGNORE features be used to handle these types of file€\FeESNORE.

* The likelihood that you will modify the file.

For example, if | am certain that | wont every want to modify the session/ files directly, then | probably
wouldn't need to manage that through CVS, but | do import the empty session/ directory to make it easier
when setting up new catalogs.

* Speed.

Managing less files in the repository takes away from the amount of time required for CVS checkout, update
branching, and other CVS actions. For most, this amount of time is small already, but it is a consideration fo
some. If you have a very large image directory, it may be benificial to leave it out at first. Note that you can
add or remove anything later on.

7.4.2. Remove files that aren't needed in CVS

Here is an example of some things to remove from your catalog. If you do move more directories, be sure tc
move them to a directory that you can later use to re—unite with a checked-out copy for a working catalog.
But here | chose just to move files that are not needed for a template "skeleton" catalog.

If you want to add images to your repository, the images directory is typically symlinked to
Ivar/www/html/foundation/images, so | remove this symlink from the working copy, and replace it with an
exact copy which will go into the CVS repository.

#Setup images directory
rm images
cp —a /variwww/html/foundation/images .

#Remove

rm —-Rf\
error.log \
*.structure \
orders/* \
logs/*\
session/* \
tmp/*\
upload/*\
backup/* \
logs/*\
#done.

The ".empty" files make it so that CVS will still checkout the
directory, even though it is empty.
touch \

orders/.empty \

logs/.empty \

session/.empty \

tmp/.empty \

7.4.2. Remove files that aren't needed in CVS 40

Interchange Documentation (Full)

upload/.empty \
backup/.empty \
#done.

7.5. Import the streamlined catalog

Import the remaining portion of the catalog using the cvs import command, with "foundation" as the
module name and repository directory name. See the CVS documentation resources mentioned in Appendi;
Resources for more information.

When you run the import command, it will launch $EDITOR (set to 'vi' earlier), and ask for a message to
go along with the import action. Whatever you see fit to write (e.g. "starting new CVS module with my
foundation catalog...") is fine.

This example import command includes renaming the foundation "working" directory back to "foundation”
for the import.

cvs import foundation foundation start

7.6. Testing the new CVS module

Now you should be able to do another test checkout or update using any CVS client, which should now
download all the files that you have just imported into CVS. Additionally, you might test your newly imported
code by making a change to one of your checked-out source files, saving it, then committing it.

index.html:
<l--this is a test comment at the top of index.html-->

Now commit the change

cvs commit index.html

Your changed version will now be resident in the repository. There are a lot of good CVS documentation an
resources for discovering more about the checkout/update/commit cycle and other CVS aspects in the
Resources Appendix

You'll also notice that even if you start your interchange server, the change you made did not take effect. Th

next section will detail the process of tying CVS and Interchange together in a way that this will happen
automatically.

7.5. Import the streamlined catalog 41

8. Integrate CVS and Interchange

The next step is to allow CVS to update the directory that Interchange uses to serve pages.

8.1. CVS checkout into the catalog directory

Now it is the time to replace the directories in your catalog that have counterparts in CVS with fresh
checkouts from CVS (this is a preliminary action to allow CVS to update your catalog directory when a
change is made to CVS).

Note: Make sure interchange daemon is stopped and you have a good backup before continuing.

tar czf ~/foundation.backup2.tgz /var/lib/interchange/foundation

Checkout a copy from CVS into a different directory (such as foundation_CVS).

cd /var/lib/interchange/
cvs co —d foundation_CVS foundation

This should create the foundation_CVS/ directory for you, so that it wont conflict with your existing
foundation/ directory.

8.1.1. Add any needed files to checked-out catalog

Note that empty directories are pruned, so they will need something in them for them to show up with a -P
checkout. Often a zero—byte file called '.empty' is used.

If you removed any directories during the streamlining step, we must first add those back so that the catalog
usable to Interchange. In this document, we only removed unneeded files and left empty directories.

This can also be the time to copy any "data" files such as orders/ logs/, etc. that might be needed if it is a liv
catalog.

cd /var/lib/interchange/foundation
cp —a <NEEDED_FILES>\
Ivar/lib/interchange/foundation_CVS

8.1.2. Install and test the new catalog

Now lets move the old foundation out of the way and put the new foundation_CVS in its place.

cd /var/lib/interchange/
mv foundation foundation_old
mv foundation_CVS foundation

Now, link up the CVS images for use by Apache.

cd /var/www/html/foundation/
mv images images_old
In —s /var/lib/interchange/foundation/images images

8. Integrate CVS and Interchange 42

Interchange Documentation (Full)

Now, you should have a working catalog again. To make sure, start up Interchange and test the site with yo
browser.

8.2. Testing manual CVS updates on Interchange catalogs

Next, lets again update the checkout we made a while back before importing our catalog. (Alternatively, one
could use a visual CVS client detailed above).

cd ~/src
cvs —q up —d foundation # —q for quiet, —d for directory prune/update

Additionally, you might test making a change to one of your checked—out source files, saving it, then
committing it.

index.html:
<l--this is a test comment at the top of index.html-->

Now commit the change

cvs commit index.html

Your changed version will now be resident in the repository. Again, CVS documentation iRigstheces
Appendix.

This time, we can allow the changes to take effect on the code being used by Interchange to serve pages. T
do so, one must run a cvs update on the catalog directory:

cd /var/lib/interchange/foundation
cvs —q up —d #up is the shortened version of "update"

That should notify you of the new version it downloaded with something like:
U pages/index.html

You may also get something like the following:

M catalog.cfg
M etc/status.foundation
M

? orders/000001
?..

The ? lines in the above example mean that the CVS server has never heard of the listed directories or files
(they are in your local source dir but not in the CVS source dir). It is harmless, but sometimes annoying, anc
can be taken care of with CVSIGNORE.

The M means that the file has been modified on your local copy, and is out of sync with the remote CVS
version (e.g. when Interchange runs it updates etc/status.foundation). Normally this is corrected by
uploading your "modified" version to the server, but in this case, the modification was done by Interchange
instead of the programmer, and wasn't meant to be committed back to the CVS repositCiSEORE.

Now, check to make sure that your change has taken effect by refreshing the homepage on the site. To see

8.2. Testing manual CVS updates on Interchange catalogs 43

Interchange Documentation (Full)

comment, use View—>Page Source or whatever the relevant command for your browser is.

At this point, its obvious that it would be time consuming to manually run 'cvs up' every time you make a
change to the source code, so the next step is to setup CVS to automatically update the catalog whenever
commit something to CVS.

8.3. Automatic updates on commit

Start by modifying $CVSROOT/CVSROOT/loginfo

oundation (date; cat; (\
sleep 1; cd /var/lib/interchange/foundation; cvs —q update —d \
) &) >> $CVSROOT/CVSROOT/updatelog 2>&1

The first line tells CVS that for every commit on modules that start with "foundation” (notice the regular
expression "Moundation"), it will run cvs update on the given catalog directory in the background. It

is important that it is executed in a forked shell (notice the "&") after sleep'ing for 1 second, because
otherwise you may run into contention issues that can cause file locking problems. The 1 second timing use
above works fine for me, but a longer pause may be necessary for slower computers (you'll know if you get
errors about "file locked by user"). See the CVS documentation_iRgheurces Appendix for more details.

8.4. Automatic e—mail on commit

Often it is very helpful to have a commit mailing list that keeps developers up—to—date on every commit
happening to the CVS. Perform these steps:

» Download syncmail

mkdir ~/src; cd ~/src

cvs co CVSROOT

cd CVSROOT

Ccvs up

wget \
http://www.icdevgroup.org/~danb/log_accum.pl \
http://www.icdevgroup.org/~danb/mailout \
#done.

chmod u+x log_accum.pl mailout

cvs add log_accum.pl mailout

touch updatelog

cvs add updatelog

cat >>checkoutlist <<EOF

log_accum.pl

mailout

updatelog

EOF

Fix Permissions for updatelog

cd $CVSROOT/CVSROOT

chmod g+w *

echo 'ALL $CVSROOT/CVSROOT/log_accum.pl %s' >> loginfo

cvs commit —m "Automatic E-mail" checkoutlist loginfo ${FN}

As root, you must setup the "cvs—log" alias to go to the correct e-mail address(es).

echo 'cvs-log: email_one@yahoo.com,email_two@yahoo.com' >> /etc/aliases
newaliases

8.3. Automatic updates on commit 44

Interchange Documentation (Full)

SeeMailserver for CVS updates.
Here is what a sample e-mail looks like:

User: danb

Date: 2003-01-16 23:40:47 GMT
Modified: pages index.html

Log:

Testing...

Revision Changes Path
1.10 +1-8 hoopstore/pages/index.html

rev 1.10, prev_rev 1.9
Index: index.html

RCS file: lhomel/interch/rep/hoopstore/pages/index.html,v
retrieving revision 1.9
retrieving revision 1.10
diff —-u -r1.9 -r1.10
———index.html 16 Jan 2003 22:47:55 -0000 1.9
+++ index.html 16 Jan 2003 23:40:47 —-0000 1.10
@@ -31,7+31,7 @@

[control-set]

[component]none[/component]
[/control-set]

[control reset=1]

@@ -51,10 +51,3 @@
<I-— END CONTENT ——>

@_LEFTRIGHT_BOTTOM_@

Now you have a working CVS development system. At this point it may be valuable to learn more about CV
the client tools that you are using.

8.3. Automatic updates on commit 45

9. The two track model: development and live
catalogs

It is often very valuable to have a two-track development model that separates the classes of work into
separate timing and decision categories. Some use "staging" and "production” terminology, others prefer

"unstable" and "stable", "beta" and "release", or "development" and "live".

The easiest starting point for two—track development is to just use two completely separate CVS modules at
catalogs. This can make a lot of sense for many situations, for example when the next revision of the site wi
be so different that it is for all practical purposes starting from ground zero.

A slightly more complicated solution is to use the CVS branches feature. It is more difficult to set up, but car
be rewarding when used correctly.

9.1. When to branch

The first decision is when to branch the source code. For websites, this can sometimes be an easy decision
"first went live", or "site—wide overhaul”, etc.

9.2. Which way to branch

There are many different ways to branch source code. What seems to be the most common method is to us
the "trunk", which is the HEAD tag to CVS as the development version, and then make a branch when a
stable release is to be made.

That model doesn't fit my development style at the current time, so | use the HEAD default branch as my
stable live version, and use other tags (like DEV1 and DEV_REALLY_UNSTABLE) for my development
branch.

You may find that you are merging (or "folding") most or all of your development ranch back into your stable
branch frequently. This is because unlike traditional programming where products are launched every two o
three years with new features, web sites often have little fixes and new features added every day or every fe
weeks, with new "releases" happening more often than traditional software development (though not all wek
sites follow that trend). The flexibility is there to branch the source for quite some time to work on a very
complex feature or complete redesign before bringing it to the live site, as well as the flexibility for
day-to—day updates.

9.3. Performing the branch

To perform the branch use the cvs tag -b <BRANCH NAME> command. For example:
cvs tag -b DEV1

Remember that this does not change your locally checked out working directory to the new tag automaticall
it only creates the branch within the CVS repository.

9. The two track model: development and live catalogs 46

Interchange Documentation (Full)

9.4. Setup the development catalog

Now we have a branch in CVS, but we need to tie it to something in the real world, namely, an Interchange
catalog.

9.4.1. Importing the catalog

Like we did inintegrating CVS with Interchange, you must make another copy of your catalog for use as the
development version. Some would like to keep the orders/, logs/, and other directories the same, but | prefe
start with a clean slate, especially since | don't plan on having any customers visit the development site. (In
fact, you can restrict who can access the development URL using the Apache <Directory> allow

from... directive).

9.4.1.1. Checkout source code

cd /varl/lib/interchange
cvs co —d foundation_dev foundation

9.4.1.2. Copy any other needed directories to complete the catalog

Depending on how complete your catalog is in CVS, you may need to create or copy directories/files.

cd /var/lib/interchange/foundation
cp —a catalog.cfg orders/* \
Ivar/lib/interchange/foundation_dev

Note: A lot of the following steps are performed by the /usr/local/interchange/bin/makecat script, but here is
how to do it manually:

9.4.2. Setting up a separate database

Most often, | find it profitable to make use of a second database for the development catalog, rather than
having both catalogs reference the same database (especially if the first catalog is live).

9.4.2.1. Create a second database

Use the means of your database platform to create a separate database. For example, PostgreSQL users n
do something like:

createdb foundation_dev
9.4.2.2. Populate the database
You can rely on the catalogs internal products/*.txt data to generate the database tables and populate them

you can export another catalog's database and import it for the development catalog, like the example belov
for PostgreSQL users.

pg_dump foundation > ~/foundation.dump
psqgl foundation_dev < ~/foundation.dump

9.4. Setup the development catalog 47

Interchange Documentation (Full)

9.4.3. Copy the catalog support files

#Must be root
su - root

#Copy HTML
cd /var/www/html/
cp —a foundation foundation_dev

#Copy CGI
cd /var/www/cgi-bin
cp —a foundation foundation_dev

9.4.4. Configure the Interchange daemon

Perform the necessary modifications to interchange.cfg. For example:

lusr/locallinterchange/interchange.cfg:
Catalog found /var/lib/interchange/foundation /cgi—bin/foundation
Catalog found_dev /var/lib/interchange/foundation_dev /cgi—-bin/foundation_dev

9.4.5. Configure the catalog specifics

The development catalog will differ at least a little bit from the standard catalog, such as in the CGI_URL an
database parameters. | recommend using a separate "local" configuration file to hold the separate values, s
as config/local.cfg, and then include it from catalog.cfg.

Ivarl/lib/interchange/config/local.cfg:
Variable CGI_URL /cgi-bin/foundation_dev
Variable IMAGE_DIR /foundation_dev/images

Now you can restart Interchange to make your changes take effect.

9.5. Splitting updates on commit by tag

Setup CVS so that when you commit to the DEV1 branch, only the development (foundation_dev)
catalog will be updated. And when you commit with no tags (HEAD branch), the live (foundation)
catalog will be updated. Here is an example loginfo. The —r <tag> may be used just in case your
environment is such that the tags may be changed by other sources.

$CVSROOT/CVSROOT/loginfo:
foundation \
(date; cat; (\
sleep 1; cd /var/lib/interchange/foundation_dev; cvs —q up —d; \
cd /var/lib/interchange/foundation; \
cvs —g up —d) &) >> $CVSROOT/CVSROOT/updatelog 2>&1
ALL Jusr/bin/cvs—-log $CVSROOT/CVSROOT/commitlog SUSER "%{sVv}"

9.6. Using new branches

To use your new branch, checkout a working copy of the source with the correct tag specified. For example:

cvs co -P -r DEV1

9.4.3. Copy the catalog support files 48

Interchange Documentation (Full)

Then make change to one of the files, and commit it. The change should show on your development cataloc
but not your live catalog.

9.7. Merging

When you want to merge a change that you have made on your development branch into your stable brancl
there are many ways that you can do it. One would be to :

¢+ Make a change in the development branch (DEV1) and commit it.

¢ Copy the development-tagged file to a temporary name

¢ Update to the live version (HEAD)

¢ Overwrite the live (HEAD) version of the file with your temporary one

¢ Commit the result

¢ Update back to the development version (DEV1)

I do the above so often that | have written a Tcl script for WinCVS that will automatically perform the above
steps. And similar shell scripts can probably be easily written to match your development environment.

The above seems to be the easiest way, to me. However, there are other alternatives detailed in the CVS
manual in chapter 5, "Branching and merging", that | highly recommend for reading. One method involves
specifying the last version that has already been merged into the live branch using a specific version numbe
date, relative time, or special purpose tag.

9.7. Merging 49

10. Tools of the trade

This is the productivity tips section, which will hopefully help you to be able to get more done in less time.

10.1. Workstation Interchange installation

Not all developers work on Linux workstations, many use Apples (graphics designers and HTML gurus tend
to, I've found), and many use Windows. This means that many developers have the extra step of uploading
their changes to a Unix server where Interchange is running in order to see their changes.

The remedy to that is to setup an Interchange server on your workstation, or any location that has direct acc
to the CVS source files. I'll explain:

The Interchange server that runs where the CVS server is (that we setup earlier) can be seen as the gatheri
point for all the developers. However, each developer may run as many Interchange daemons as he/she
requires in a local context for the purpose of seeing the changes made before uploading them via CVS.

For example, Bob could setup another Interchange catalog on the same server as the CVS, (e.g.
foundation—bob). To get direct access to those files (rather than FTP), Bob could use NFS mounts (if Bob's
workstation is Linux) or SMB mounts using Samba if his workstation is a Windows variant. Any way that
Bob can get direct access to the files will save him some time (by cutting out the "upload" from the
"edit—>upload—>test" development cycle). One could even use VMware to run a Linux server on your
Windows workstation.

Note: You can now use the cygwin compatibility confirmed in Interchange versions 4.7.6 and above to run
Interchange right on your Windows workstation.

The result will be that you can modify the files with your favorite text editor and see the results immediately
through your local catalog. Setting up the catalog initially is quite easy. Just follow the same steps used to
setup the CVS catalog. Which is:

» Checkout from CVS into a new CVS catalog directory and link the images/ directory.
» Make localized configuration modifications. | recommend creating a config/local.cfg file and
then include it at the top of catalog.cfg, with the contents of:

Variable CGI_URL /cgi—-bin/foundation
Variable SERVER testserver

Variable SECURE_ENABLE 0

Variable IMAGE_DIR /foundation/images

* Restart Interchange.

You may need to remove all *.sql files from the products directory, to create all of the database files again.
Additionally, you may need to create the database, username/password for your database again as well.

You will need to recreate any symbolic links that previously existed, such as templates/default —>
templates/foundation

Another thing that you might have noticed at this point is all the files that are modified locally by the
Interchange daemon will report ? or M when you run an update. To fix thiS\S8I6&NORE.

10. Tools of the trade 50

Interchange Documentation (Full)

10.2. CVSIGNORE

On the heals of a workstation installation is the requirement to setup CVSIGNORE. For all files that change,
but you want to ignore (such as etc/foundation.status), create an entry in the .cvsignore file in that
directory. Note that the file must be removed from the cvs repository before it will work.

Here is a script that will create some sample files:

cat >.cvsignore <<EOF
error.log

*.structure

timed

tmp

EOF

cat >etc/.cvsignore <<EOF
status.*

*.counter

*.number

*.recordnumber

EOF

cat >products/.cvsignore <<EOF
* Ink

*.sql

*.autonumber

* [1-9]*

* csv.numeric

* name

* sort

* txt.*

EOF

echo "local.cfg" > config/.cvsignore
echo ™" > backup/.cvsignore

echo "*" > logs/.cvsignore

echo """ > orders/.cvsignore

echo "*" > session/.cvsignore

echo "*" > upload/.cvsignore

echo """ > tmp/.cvsignore

cvs add \
.cvsignore \
etc/.cvsignore \
products/.cvsignore \
config/.cvsignore \
backup/.cvsignore \
logs/.cvsignore \
orders/.cvsignore \
session/.cvsignore \
upload/.cvsignore \
tmp/.cvsignore \
#done.

10.2. CVSIGNORE 51

Interchange Documentation (Full)

10.3. Mailserver for CVS updates

An easy alternative to setting up a mailserver is to merely alias the addresses that you would like updated. |
you don't have many users following your commit list, it is recommended. In /etc/aliases, merely put:

cvs-log: address_one@yahoo.com,address_two@yahoo.com,address_three@yahoo.com
Then run newaliases and your "mini" mailing list will be all setup.

To setup a mailserver for CVS updates, first download and install Mailman. For RPM-based systems, chec}
on rpmfind.net for a precompiled binary package.

After installing, read the following information about Mailman and what needs to be done after installation
(taken from the RPM meta data):

"Mailman is software to help manage email discussion lists, much like Majordomo and Smartmail. Unlike
most similar products, Mailman gives each mailing list a web page, and allows users to subscribe,
unsubscribe, etc. over the web. Even the list manager can administer his or her list entirely from the web.
Mailman also integrates most things people want to do with mailing lists, including archiving, mail <—> news
gateways, and so on.

When the package has finished installing, you will need to:

* Run /var/mailman/bin/mmsitepass to set the Mailman administrator password.

« Edit /var/mailman/Mailman/mm_cfg.py to customize Mailman's configuration for your site.

» Modify the sendmail configuration to ensure that it is running and accepting connections from the
outside world (to ensure that it runs, set "DAEMON=yes" in /etc/sysconfig/sendmail, ensuring that it
accepts connections from the outside world may require modifying /etc/mail/sendmail.mc and
regenerating sendmail.cf), and

» Add these lines:

ScriptAlias /mailman/ /var/mailman/cgi-bin/
Alias /pipermail/ /var/mailman/archives/public/
<Directory /var/mailman/archives>

Options +FollowSymlinks
</Directory>

to /etc/httpd/conf/httpd.conf to configure your web server.

Users upgrading from previous releases of this package may need to move their data or adjust the
configuration files to point to the locations where their data is."

Then run /var/mailman/bin/newlist and follow the directions from there.

10.4. Locally mapped source code for a network IC server

This is useful mostly to Windows users, since Linux users can just as easily run IC daemons on their own
workstation as they can a separate server.

The idea is to have the IC server use its own files and directories for things that won't be edited and modifie
locally, but reference a Samba directory or NFS directory for things that will (such as pages/,

10.3. Mailserver for CVS updates 52

Interchange Documentation (Full)

templates/, etc.).

10.4.1. Mount the Samba or NFS directory

smbmount <...> or mount —t nfsfs <...>

The following script uses two directories (source and destination) to create symlinks for the commonly
modified source directories of Interchange.

export S=/mnt/nfs/foundation

export D=/var/lib/interchange/foundation
F=db; In —s $S/$F $D/$F

F=dbconf; In —s $S/$F $D/$F

F=etc; In —s $S/$F $D/$F

F=images; In —s $S/$F $D/$F

F=pages; In —s $S/$F $D/$F
F=special_pages; In —s $S/$F $D/$F
F=templates; In —s $S/$F $D/$F

This will leave you with a working catalog that can be quickly modified (since your editor can access the loc:
copy), while Interchange has to do the work of going over the SMB or NFS connection.

10.5. jEdit — a good editor with Interchange/HTML/Perl
colorization and CVS

I have been quite impressed with jEdittp://www.jedit.org, and open source editor that is written in Java and
runs on most platforms.

| use the interchange.xml language definition written by Chris Jesgghma@sitemajic.net, which is
available fromhttp://www.sitemajic.net/jedit/. With this, jEdit automatically colors HTML, Perl, AND many
Interchange tags very intelligently.

Further, jEdit has a CVS plugin, written by Ben Sarsdmesa@rsgard@vmtlic.com, and available at:
http://www.vmtllc.com/~bsarsgard/jedit.html. This plugin allows you to diff, update, and commit right from
the editor.

10.6. Separate servers for development and live catalogs

If you have the luxury of separate server hardware for the development and live catalogs, you might find the
following utility helpful:

» CVSviaFTP http://www.cvshome.org/dev/addoncvsftp.html) — from the CVS Add-ons page
(http://www.cvshome.org/dev/addons.html).

It allows one to have a given CVS module automatically publish each update to an FTP server, which could

serve as the live server. Or one could could use it if your CVS installation is only local and you could use it t
upload your changes to your production server.

10.4.1. Mount the Samba or NFS directory 53

http://www.jedit.org
mailto:chris@sitemajic.net
http://www.sitemajic.net/jedit/
mailto:bsarsgard@vmtllc.com
http://www.vmtllc.com/~bsarsgard/jedit.html
http://www.cvshome.org/dev/addoncvsftp.html
http://www.cvshome.org/dev/addons.html

A. Credits

« Jon Jensen: Thanks for helping me get going on the SDF format already used by the Interchange
documentation, and fixing some SDF syntax errors.

» Mike Heins & all who have contributed to the success of Interchange: Thanks for following the
Way Of The Source, for quality programming, and for helping to making IC something to write
about.

» Thanks to the countless others who have written the CVS documentation that is available online,
which was my only source for learning CVS.

A. Credits 54

B. Document history

« May 2001. Conceived and written by Dan Browning.

« July 19, 2001. First draft complete, first public release.

 April 12, 2002. Minor typographical edit.
« June 8, 2002. Minor updates.

B. Document history

55

C. Resources

C.1. CVS Documentation

Here are some resources for learning more about CVS. | have ranked them by the order of usefulness, whic
is of course, objective.

« Karl Fogel's CVS boaqkttp://cvsbook.red—bean.com/

* The official CVS manuahttp://www.cvshome.org/docs/manual/
 The official CVS FAQhttp://fag.cvshome.org/

« The official CVS homepagettp://www.cvshome.org

* Info—CVS mailing listhttp://mail.gnu.org/mailman/listinfo/info—cvs

* CVS FAQ 2http://www.cs.utah.edu/dept/old/texinfo/cvs/FAQ.txt
« Sean Dreilinger's CVS Version Control for Web Site Projbttts//durak.org/cvswebsites/

» Pascal Molli's CVS reference sitétp://www.loria.fr/~molli/cvs—index.html

» CVS Tutorialhttp://cellworks.washington.edu/pub/docs/cvs/tutorial/cvs_tutorial_1.html
e CVS Tutorial 2http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/cvs/

* Red Hat CVS pserver setup guidgp://www.michael-amorose.com/cvs/

* CVS Add-onghttp://www.cvshome.org/dev/addons.html

C.2. CVS Server Software

* CVS RPM download (Red Hat Linux 7.1)

ftp://speakeasy.rpmfind.net/linux/redhat/7.1/en/os/i386/RedHat/RPMS/cvs—1.11-3.i386.rpm
« Links to source tarball links can can be found at cvshome.org.

C.3. CVS Client Software

There is a variety of client access methods for using CVS on your development box.

« CVSGUI is a great project that brings graphical clients to Linux, Windows, and Mac at
http://www.cvsgui.org. These also give you the same access to all the command line cvs commands

* jCVS is a great cross—platform graphical CVS client availablgtpt//www.jcvs.org.

« jEdit is a great cross—platform text editor written in java, which not only has a CVS module that
allows you to commit (upload) files directly from the editor, but also has a Interchange Tag Language
(and Perl language) colorizer/parser. It is available fintt//www.jedit.org.

Copyright 2002-2004 Interchange Development Group. Copyright 2001-2002 Dan Browning
<dan.browning@kavod.com>. Freely redistributable under terms of the GNU General Public License. line:

C. Resources 56

http://cvsbook.red-bean.com/
http://www.cvshome.org/docs/manual/
http://faq.cvshome.org/
http://www.cvshome.org
http://mail.gnu.org/mailman/listinfo/info-cvs
http://www.cs.utah.edu/dept/old/texinfo/cvs/FAQ.txt
http://durak.org/cvswebsites/
http://www.loria.fr/~molli/cvs-index.html
http://cellworks.washington.edu/pub/docs/cvs/tutorial/cvs_tutorial_1.html
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/cvs/
http://www.michael-amorose.com/cvs/
http://www.cvshome.org/dev/addons.html
ftp://speakeasy.rpmfind.net/linux/redhat/7.1/en/os/i386/RedHat/RPMS/cvs-1.11-3.i386.rpm
http://www.cvsgui.org
http://www.jcvs.org
http://www.jedit.org

Interchange + Forum/Blog HOWTO

Interchange + Forum/Blog HOWTO

57

11. Introduction

11.1. Preamble

Copyright 2002-2004 Mike Heins <mike.heins@perusion.net> and Michael Wilk
<mwilk@steppenwolf.com>. Freely redistributable under terms of the GNU General Public License.

11.2. Purpose

The purpose of this document is to expose how to use Interchange 5.0's forum and blog capability, enabled
with the [forum ...] tag and a few ancilliary files.

11.3. Audience

Anyone who is using an Interchange catalog. This is not rocket science.

11.4. Contact the authors

If you find any spelling errors, technical slip—-ups, mistakes, subliminal messages, or if you wish to send
feedback, critique, remarks, comments, or if you wish to contribute examples, instructions for alternative
platforms, chapters, or other material, please do so.

The preferred method of submitting changes is in the form of a context diff against the SDF source file
(ic_howto_forum.sdf). Please address your correspondence to:

Michael Wilk mwilk@steppenwolf.com

Mike Heinsmike.heins@perusion.net
11.5. What it does

Interchange forums allow your customers to comment on your products, or allow you to sponsor discussion
threads on an interchange catalog. They maintain their content in a single database table named forum.

11. Introduction 58

mailto:mwilk@steppenwolf.com
mailto:mike.heins@perusion.net

12. Component files of the forums

There are two directories to add to your foundation catalog —- include/forum and pages/forum. You

must add a database table definition, as well as a database source file. You should add Variable support to
variable.txt database, and supporting metadata with help. Finally, you need to add the forum.tag file

which contains the forum code.

If you build a foundation catalog from the latest Interchange source, all of these will be done already.

The files that are needed in the catalog directory:

dbconf/default_db/forum.dbm
dbconf/mysgl/forum.mysql
dbconf/pgsql/forum.pgsql
include/forum/reply_form
include/forum/submit_form
pages/forum/reply.html
pages/forum/display.html
pages/forum/submit.html
products/forum.txt

The files that are needed in the Interchange software directory:

code/UserTag/forum.tag

Add the following lines to products/variable.txt (change | to TAB):

FORUM_ANON_NAME|Anonymous Coward|Forums
FORUM_PRODUCTS|1|Forums
FORUM_EMAIL_NOTIFY|sales@yourcompany.com|Forums

Add the following records to products/mv_metadata.asc (shown in key: value format, edit file to
match with "te" or some other tool):

#

This is a temporary file, automatically generated from the
database file:

#

[tmp/what.txt

#

If you change anything in it, it will be converted back into the
original format and will replace the original file.

#

code:variable::Variable:FORUM_EMAIL_NOTIFY
type:text

width:50

height:

field:

db:

name:

outboard:

options:

attribute:

label:Forum notify email

help:An email address to send copies of user comments on products.
lookup:

12. Component files of the forums 59

Interchange Documentation (Full)

filter:

help_url:

pre_filter:

lookup_exclude:

prepend:

append:

display_filter:

default:

extended:

#
code:variable::Variable:FORUM_ANON_NAME
type:text

width:20

height:

field:

db:

name:

outboard:

options:

attribute:

label:Forum Anonymous Name
help:Name to use when a user posts anonymously to a forum
lookup:

filter:

help_url:

pre_filter:

lookup_exclude:

prepend:

append:

display_filter:

default:

extended:

#
code:variable::Variable::FORUM_PRODUCTS
type:yesno

width:

height:

field:

db:

name:

outboard:

options:

attribute:

label:Enable Product Forums
help:This enables user comments on products in the flypage.
lookup:

filter:

help_url:

pre_filter:

lookup_exclude:

prepend:

append:

display_filter:

default:

extended:

Add the following block to pages/flypage.htmil:

[if variable FORUM_PRODUCTS]
<tr>
<td>

12. Component files of the forums

60

Interchange Documentation (Full)

[forum top="[item—code]" display_page="forum/display" /]
<p>
[page href="forum/reply"
form="
product=1
mv_arg=[item-code]

]JComment on this product.
</p>
</td>
</tr>
[/if]
This would normally go at the end of the table displaying the product, but you can place and edit to suit.

Again, all of this is provided if you have installed from the latest Interchange 4.9.4 or higher.

12. Component files of the forums 61

13. The [forum] ITL Tag

The [forum] tag is what provides the capability. It uses the forum table and follows tree-like threads in that
table.

It has one required parameter, top. That gives the id of the message that is the top of the thread to display.
This is a complete forum display for a product:
[forum top="[item-code]" /]
You will see something like that in the snip from pages/flypage.html above.
You can pass many more parameters to the [forum] tag. Some of them are:
display—-page

By default, the [forum ...] tag uses the current page to link to to re—display the forum at another level.
Normally this works fine, but on a product flypage it will not work. You must pass in a different page.

[forum top="[item—code]" display—page="forum/display" /]
show-level

By default, [forum] only displays the text of top—level replies to the current thread. If you want to display
more levels, set the show-level parameter to 1 or higher:

[forum top="[data session arg]" show-level=3 /]
The above will show the first four levels of replies, with links to any further down the tree.
scrub—score

If you want to moderate certain comments so that their text won't be shown, you can set the scrub—score
parameter to —1 and then set the score field in the message's database record to —1. By default, it is linked 1
with a message:

One message beneath your threshold

If you want to totally disable the appearance of the link and message, set the scrub—template to
something:

[forum top=THREAD
scrub-score="-1"
scrub-template="<!-- killed! ——>"

N

show-score

By default, if a message has a score of two or higher, it's text will be shown no matter what level of display i
is on. You can set that threshold with this paramter.

13. The [forum] ITL Tag 62

Interchange Documentation (Full)

template

You can set the template that displays replies with this parameter. You can also pass this as the container t
for the [forum] tag, i.e.:

[forum top="[data session arg]"]
<table cellspacing=0 cellpadding=2 width="65%">
<tr>
<td class=contentbarl>
{SUBJECT}
by {USERINFO}
on {DATE}
</td>
<td class=contentbarl align=right>
[,;
Reply
]
</td>
</tr>
<tr>
<td colspan=2>
{COMMENT}
</td>
</tr>
</table>
[/forum]

See pages/forum/display.html for an example.
header-template

You can set the header template that displays the top-level message with this parameter. See
pages/forum/display.html for an example.

link—-template

You can set the template that displays the links to messages that are not shown with this parameter. See
pages/forum/display.html for an example.

scrub—template

The template for a message that has a score lower than scrub—score. See
pages/forum/display.html for an example.

threshold—message

The message displayed in the default scrub—template when a message is scrubbed. If you set the
scrub—template yourself, it is ignored.

display—-page
The page linked to with {DISPLAY_URL]}. Default is the current page. See Templating below.

reply—page

13. The [forum] ITL Tag 63

Interchange Documentation (Full)

The page linked to with {REPLY_URL}. Default is forum/reply.html. See Templating below.
submit-page

The page linked to with {SUBMIT_URL}. Default is forum/submit.html. See Templating below.
date—format

The format for the date provided with {DATE}. Default is %B %e, %Y @%H:%M, which provides a date like
October 5, 2002 @21:19.

13. The [forum] ITL Tag 64

14. Templating

All of the [forum] display mechanisms are templated. You can pass four templates —— template,
header-template, link—template, and scrub—template.

They use the substitution style found in Interchange's attr-list ITL tag.

The following values are available for templating:

ADDITIONAL Additional text normally only used at the top level
COMMENT Text of the message

CREATED Created date in ISO format

DATE Date the comment was made

DISPLAY_URL URL to display the forum with a new starting point
FORUM_APPEND End indent tags for item (automatic, don't use)
FORUM_PREPEND Begin indent tags for item (automatic, don't use)
MOD_TIME Modified date in ISO format

PARENT_URL URL to call the parent of the comment

REASON Text indicating reason for scoring

REPLY_URL URL to reply to the commetn

SCORE Score of the article

SUBJECT Subject of the message

SUBMIT_URL URL to submit a new top-level thread

TOP_URL URL to call the top level of the thread (if not at top)
USERINFO User information based on login status and anonymity

You can see how the above are used by examining the file pages/forum/display.html and playing
around with the provided templates.

14.1. Templating rules

14.1.1. {KEY}

Inserts the value of the KEY for the reference. In a database query, this is the column name.

14.1.2. {KEY/|fallback string}

Displays the value of {KEY} or if it is zero or blank, the fallback string (i.e., default).

14.1.3. {KEY true string}

Displays true string if the value of {KEY} is non-blank, non-zero, or displays nothing if the key is
false.

14.1.4. {KEY?} true text {/KEY?}

Displays true text if the value of {KEY} is non-blank, non-zero, and nothing otherwise.

14. Templating 65

Interchange Documentation (Full)

14.1.5. {KEY:} false text {{KEY:}
Displays false text if the value of {KEY} is blank or zero, and nothing otherwise.

Copyright 2002-2004 Mike Heins <mike.heins@perusion.net> and Michael Wilk
<mwilk@steppenwolf.com>. Freely redistributable under terms of the GNU General Public License. line:

14.1.5. {KEY:} false text {/KEY:} 66

Interchange + QuickBooks HOWTO

Interchange + QuickBooks HOWTO

67

15. Introduction

15.1. Summary Description

Interchange QuickBooks —— QuickBooks support for transactions and items

15.2. Audience

Users who already have Quickbooks setup and are familiar with it, in addition to having the foundation (or
other) catalog correctly working.

15.3. Contact the author

If you find any spelling errors, technical slip—ups, mistakes, subliminal messages, or if you wish to send
feedback, critique, remarks, comments, or if you wish to contribute examples, instructions for alternative
platforms, chapters, or other material, please do so.

The preferred method of submitting changes is in the form of a context diff against the SDF source file
(ic_howto_gb.sdf). Please address your correspondence to:

Volunteer Maintainer, Dan Browni kavod.com
or

Original Author, Mike Heingnike@perusion.com

15.4. Version

This document describes software based on Interchange 4.5 and later.

15. Introduction 68

mailto:db@kavod.com
mailto:mike@perusion.com

16. Description

Interchange is a business-to—-business and business—to—consumer internet ordering and cataloguing produ
It has the ability to take orders via the World Wide Web, and store transaction data.

This document describes how to interface Interchange with QuickBooks, the popular small-business
accounting program from Intuit.

QuickBooks has an import/export format called IIF, a mnemonic for Intuit Interchange Format. Fitting, eh?

The standard capabilities of Interchange allow production of IIF files for transaction passing. With some
support from Interchange UserTags, it can even import and export item listings.

16. Description 69

17. Contents

The extension files can be found in the Interchange tarball under the 'extensions/quickbooks'
directory. The following files are used with this extension:

usertag/import_quicken_items UserTag for importing items
usertag/export_quicken_items UserTag for exporting items
pages/admin/quickbooks/* Menu support for Interchange Ul
gb.catalog.cfg Quickbooks configuration.

17. Contents

70

18. Installation

To set up this extension, the basic steps are:

« Create and copy directories and files.

» Add additional database fields.

» Modify catalog.cfg with additions.

» Add "quickbooks" order route to checkout pages.

 Restart Interchange.

» Export your items from Interchange catalog (or import your existing QuickBooks items to
Interchange).

* Test.

18.1. Terms and locations

Several terms are used in the examples.

Catalog Directory

This is the main directory for the catalog, where catalog.cfg resides. It will have a NAME, the name for the
catalog. (Some common Interchange demo names are foundation, construct, barry, and simple.)
Common locations:

Ivar/lib/interchange/NAME /ust/local/interchange/catalogs/INAME $HOME/catalogs/NAME

We will use the path /var/lib/interchange/foundation in these examples.

Interchange software directory

This is the main directory for your Interchange server, where the file interchange.cfg resides. Common
locations:

lusr/lib/interchange /usr/local/interchange $HOME/ic

We will use the path /ustr/lib/interchange in these examples.

Interchange tarball directory

The quickbooks files are located in the untarred distribution file, before installation of Interchange is
performed.

Interchange User
The Interchange daemon runs as a user ID that cannot be root. It will require write permission on directories

must modify to do its work.
We will use the user ID interch in these examples.

18.2. Create and copy directories and files

This extension requires you to add some files to your catalog.

It is assumed you have tools and knowledge to create directories with the proper permissions. Any directorie
that will contain varying files like order transaction logs will require write permission for the Interchange

18. Installation 71

Interchange Documentation (Full)

daemon user; pages and configuration only need have read permission.

18.3. Quick Installation Script

This script will install the necessary files for you, provided that you modify the variables to your environment
Alternately, you can follow the more detailed installation instructions that follow it.

Note that if you are not using a 4.9.8+ version of Interchange, you will need to manually install the
gb_safe.filter by copying it from the 4.9.8 code/Filter/gb_safe.filter into your Interchange version.

Modify these three variables to match your environment.
export QB=/path/to/interchange/extensions/quickbooks
export VENDROOT=/usr/local/interchange

export CATROOT=/home/interch/catalogs/foundation

mkdir -p $CATROOT/include/menus $CATROOT/vars
cp - $QB/TRANS_QUICKBOOKS \
$CATROOT/vars
cp —r $QB/pages/admin/quickbooks \
$CATROOT/pages/admin
cp —i $QB/usertag/* \
$VENDROOT/code/Ul_Tag

Alternate usertag installation style:

#

#mkdir —-p $CATROOT/usertags/global

#cp —i $QB/usertag/* \

$CATROOT/usertags/global

#

Then include the global/*.tag in your interchange.cfg

Variables that optionally modify the export process, along with

their help entries.

cat $QB/products/variable.txt.append >>\
$CATROOT/products/variable.txt

cat $QB/products/mv_metadata.asc.append >>\
$CATROOT/products/mv_metadata.asc

Menu entries: start with the existing menu, then add ours.

cp —i $VENDROOT/lib/Ul/pages/include/menus/Admin.txt \
$CATROOT/include/menus

cat $QB/menus/Admin.txt.append >>\
$CATROOT/include/menus/Admin.txt

Some configuration changes.

cat >> $CATROOT/catalog.cfg <<EOF

Allows vars/TRANS_QUICKBOOKS

DirConfig vars

You can remove these requires if you don't want to use the
Quickbooks Ul menu items

Require usertag import_quicken_items

Require usertag export_quicken_items

EOF

18.3. Quick Installation Script 72

Interchange Documentation (Full)

18.4. Admin Ul Usage

After successful installation, there should be a "Quickbooks" menu item under the "Admin" category. From
there, you can "generate IIF files", download them, and perform other Quickbooks-related tasks.

Make orders directory

Create the directory orders in your Catalog Directory if it doesn't already exist. (It may be a symbolic link
to another location.) It must have write permission on it.

cd /var/lib/interchange/foundation mkdir orders

If you are doing this as root, also do:

chown interch orders

This directory is used to store the QuickBooks IIF files produced for orders. The files are created with the
form:

gbYYYYMMDD.iif

Each day will have a file, and when a day is complete you should download the orders. (There are other
schemes possible.)

Copy pages

You will want the Interchange Ul support if you are using the Ul. It provides links for importing/exporting
items, downloading and viewing IIF files, and possibly other functions over time. At the UNIX command
line:

cd /ustr/lib/interchange/ cp —r extensions/quickbooks/pages/admin/quickbooks \
Ivar/lib/interchange/foundation/pages

Copy report generation file etc/trans_quickbooks

This file is used to generate the IIF file(s) for transaction import into QuickBooks.
cd /usr/lib/interchange/ cp extensions/quickbooks/etc/trans_quickbooks \ /var/lib/interchange/foundation/etc

Copy usertags
If you want to use the Ul item import/export, two usertags are required. The easiest thing is just to copy ther
to the Interchange software directory subdirectory lib/Ul/usertag, which is #included as a part of the Ul

configuration file.
cd /ustr/lib/interchange cp —i extensions/quickbooks/usertag/* lib/Ul/usertag

18.5. Additional database fields —— userdb

If your catalog is not based on a 4.6+ version of the foundation catalog, you may not have some of the
additional database fields necessary. If you want the user to retain their customer number, add the following
field to the "userdb” table:

customer_number

It can be an integer number field if your database needs that information. To add the field in MySQL, you ca
issue the following queries at the mysqgl prompt:

alter table userdb add column customer_number int;

18.4. Admin Ul Usage 73

Interchange Documentation (Full)

If you don't add it, it just means that a new customer number will be assigned every time.
WARNING If you are using Interchange DBM files and have live data it is not recommended you add this

field unless you are positive you will not overwrite your data. If you are not a developer, get one to help you.
In any case, back up your userdb.gdbm or userdb.db file first.

18.6. Additional database fields —— inventory

Quicken also needs an account to debit for the split transactions it uses to track item sales. If you don't crea
these fields to relate to each SKU, the account "Other Income" will be used in the exports.

Add the following fields to the "inventory" table:

account cogs_account

To add the fields in MySQL, you can issue the following queries at the mysql prompt:

alter table inventory add column account char(20); alter table inventory add column cogs_account char(20);
Other SQL databases will have similar facilities.

If you are using Interchange DBM files, just export the inventory database, stop the Interchange server (to

prevent corruption), add the fields on the first line by editing the inventory.txt file, then restart
Interchange.

18.7. Modify catalog.cfg with additions:

Add the entries in gb.catalog.cfg to catalog.cfg (you can use an include statement if you wish).

There are some Require directives to ensure that the needed UserTag definitions are included in the catalog
well as the Route which is used

18.8. Add quickbooks order route

In the Interchange UlI, there is a Preferences area "ORDER_ROUTES". You should add the quickbooks
route. Place it after the transaction logging step, i.e.

code ORDER_ROUTES Variable log quickbooks main copy_user
ADVANCED, If you know Interchange Variable settings, you can add it directly:
Variable ORDER_ROUTES log quickbooks main copy_user

Also, you can use other methods to set order routes. See the Interchange reference documentation.

18.9. Additional Variables

Optionally, you may specify some variables that modify the behavior of the Quickbooks export feature.
Documentation for these variables is provided via item-specific meta data, which can be added to your

18.6. Additional database fields —— inventory 74

Interchange Documentation (Full)

mv_metadata.asc file for automatic display by the Admin UI.

See the installation script at the top of this document for commands that will append the empty variables to
your variable.txt and the help information to your mv_metadata.asc files.

18.10. Restart the catalog

This can be done by restarting the Interchange server or by clicking Apply Changes in the Ul.

18.11. Export the items

You can access the Quickbooks Ul index by making your URL:

http://YOURCATALOG_URL/admin/quickbooks/index

It will provide options for importing and exporting items. This is necessary so QuickBooks will be able to
take orders for your items.

QuickBooks uses the product "name" as an SKU, along with an integer reference number. Either you need 1
make your SKUs match the integer reference number, or you must ensure your product title is unique.

18.12. Test

Place a test order on your Interchange catalog once you have finished installing. You should find a file in the
orders directory with the name gbYYYYMMDD.iif. (YYYY=year, MM=month, DD=day.) Transfer this

file to your QuickBooks machine and run File/Import and select that file as the source. This should import th
customer and order into the system. If it doesn't work, it may be due to lack of sales tax or shipping
definitions, discussed below.

18.10. Restart the catalog 75

http://YOURCATALOG_URL/admin/quickbooks/index

19. Usage

19.1. Accessing Admin Ul Features

A typical installation will cause the Administrative User Interface Features to become available via the top
level menu:

* Login to the Admin Ul
e Administration
» Quickbooks

You should then be presented with a menu of the Admin Ul features.

19.2. Generating IIF Files

To generate the IIF files, access the corresponding page from the Admin Ul Quickbooks Menu
(Administration —> Quickbooks —> Generate IIF Files).

You will be presented with a query tool. Select the query options that you would like and submit your query.
Among the query options, you have the option to input a QB transaction number. This will be the first numbe
that is used when generating the IIF files, and it will be incremented for each sequential order in the query.

You will be notified of its success or failure. The resulting page will:

« Inform you of the success or failure of the query.

« Provide a link to the "results" IIF file (which includes all of the orders found by the query). Note that
this "results" IIf file is overwritten every time a query is run.

« Provide a link for each IIF file (one per order). This can be used as a backup, or for importing
one-by-one instead of all at once.

19. Usage 76

20. Discussion

The interface provided works for the sample company data distributed with QuickBooks. There are certain
requirements to make sure it works in your environment.

Also, you can change the configuration by editing the file etc/trans_quickbooks to suit your IIF file needs.

20.1. Sales Tax

QuickBooks has a taxing system whereby tax rates are defined by customer location. There is usually also «
generic Sales Tax Item, such as contained in the sample company data. This allows Interchange to
calculate the sales tax. If that item is not present then you will need to create it, or specify your tax item usin
the QB_SALES_ TAX_ITEM variable.

20.2. Shipping

Interchange will add a generic item Shipping to each order that has a shipping cost. Its MEMO field will
contain the text description of the mode. If that item is not in your QuickBooks item definitions, then you
must create it, or specify your shipping item using the QB_SHIPPING_ITEM variable.

20.3. Customer Imports

To generate a QuickBooks transtype of INVOICE, a CUSTOMER is required. Interchange outputs a CUST
IIF record for each sale with the customer information. Since QuickBooks uses the customer name or
company to generate the unique listing, we place the Interchange username in parentheses after the compz
or name.

20.4. lIF generation at time of order

As of 4.9, the IIF generation was moved from an order route into the Admin Ul. This was done so that the Il
generation process could be fine tuned without restarting Interchange and placing an order. If you need the
file generated at the time of order, you can still access the pre—4.9.6 files in

extensions/quickbooks/legacy.

20. Discussion 77

D. Credits

» Mike Heins: This document was copied from the original POD documentation

(extensions/quickbooks/ic_gb.pod) written by Mike Heins mike@perusion.com.

« Dan Browning: Updated by Dan Brownindb@kavod.com.

D. Credits

78

mailto:mike@perusion.com
mailto:db@kavod.com

E. Document history

« July 20, 2002. Initial revision.

E. Document history

79

F. Resources

F.1. Documentation
« What are the IIF File Headerkfp://www.quickbooks.com/support/faqs/gbw2000/121756.html

« Also see the Quickbooks Help item, "Reference guide to import files"

Copyright 2002-2004 Interchange Development Group. Freely redistributable under terms of the GNU
General Public License. line:

F. Resources 80

http://www.quickbooks.com/support/faqs/qbw2000/121756.html

Advanced Interchange Topics

Advanced Interchange Topics

81

21. Advanced Interchange Topics

» Maintaining production Interchange servers

« Interchange Administration Tool Development
» Making catalog skeletons for use with makecat
* Building custom link programs

« Installation tips and troubleshooting

« Usertracking

21. Advanced Interchange Topics

82

22. Maintaining Interchange

Some utilities are supplied in the VendRoot/bin directory:

compile_link Compiles an Interchange vlink or tlink CGI link
configdump Dumps the configuration directives for a particular catalog
dump Dumps the session file for a particular catalog

expire Expires sessions for a particular catalog

expireall Expires all catalogs

makecat Make catalog

Some example scripts for other functions are in the eg/ directory of the software distribution.

Some thought should be given to where the databases, error logs, and session files should be located,
especially on an ISP that might have multiple users sharing an Interchange server. In particular, put all of th
session files and logs in a directory that is not writable by the user. This eliminates the possibility that the
catalog may crash if the directory or file is corrupted.

To test the format of user catalog configuration files before restarting the server, set (from VendRoot):
bin/interchange —test
This will check all configuration files for syntax errors, which might otherwise prevent a catalog from

booting. Once a catalog configures properly, user reconfiguration will not crash it. It will just cause an error.
But, it must come up when the server is started.

22.1. Starting, Stopping, and Re-starting the Servers

The following commands need to have VENDROOT changed to the main directory where Interchange is
installed. If the Interchange base directory is /homel/interchange/, the start command would be
/home/interchange/bin/interchange.

Do a perldoc VENDROOT/bin/interchange for full documentation.

To start the server with default settings:

VENDROOT/bin/interchange

Assuming the server starts correctly, the names of catalogs as they are configured will be displayed, along
with a message stating the process ID it is running under.

It is usually best to issue a restart instead. It doesn't hurt to do a restart if you're actually starting the first tim
And, if a server is already running (from this VENDROOT), a new start attempt will fail. To restart the server

VENDROOT/bin/interchange -restart
The —r option is the same as —restart.
This is typically done to force Interchange to re-read its configuration. A message will be displayed stating

that a TERM signal has been sent to the process ID the servers are running under. This information is also
sent to VENDROOT/error.log. Check the error.log file for confirmation that the server has restarted

22. Maintaining Interchange 83

Interchange Documentation (Full)

properly.
To stop the server:

VENDROOT/bin/interchange -stop

A message will be displayed stating that a TERM signal has been sent to the process ID the server is runnir
under. This information is also sent to VENDROOT/error.log.

Because processes waiting for selection on some operating systems block signals, they may have to wait fc
HouseKeeping seconds to stop. The default is 60.

To terminate the Interchange server with prejudice, in the event it will not stop:

VENDROOT/bin/interchange -kill

22.2. UNIX and INET modes

Both UNIX-domain and INET-domain sockets can be used for communication. INET domain sockets are
useful when more than one web server, connected via a local-area network (LAN), is used for accessing an
Interchange server.

Important note: When sending sensitive information like credit card numbers over a network, always ensure
that the data is secured by a firewall, or that the Interchange server runs on the same machine as any
SSL-based server used for encryption.

Use the —i and —u flags if you only want to use one communication method:

Start only in UNIX mode
VENDROOT/bin/interchange -r —u

Start only in INET mode
VENDROOT/bin/interchange -r —i

22.3. User Reconfiguration

The individual catalogs can be reconfigured by the user by running the [reconfig] support tag. This should be
protected by one of the several forms of Interchange authentication, preferably by HTTP basic authorization
SeeRemoteUser.

The command line can be reconfigured (as the Interchange user) with:
VENDROOT/bin/interchange —-reconfig=catalog
It is easy for the administrator to manually reconfigure a catalog. Interchange simply looks for a file

etc/reconfig (based in the Interchange software directory) at HouseKeeping time. If it finds a script
name that matches one of the catalogs, it will reconfigure that catalog.

22.2. UNIX and INET modes 84

Interchange Documentation (Full)

22.4. Expiring Sessions

If Interchange is using DBM capability to store the sessions, periodically expire old sessions to keep the
session database file from growing too large.

expire —c catalog

There is also an expireall script which reads all catalog entries in interchange.cfg and runs
expire on them. The expire script accepts a —r option which tells it to recover lost disk space.

On a UNIX server, add a crontab entry such as the following:

once a day at 4:40 am
40 4 *** perl /home/interchange/bin/expireall —r

Interchange will wait until the current transaction is finished before expiring, so this can be done at any time
without disabling web access. Any search paging files for the affected session (kept in ScratchDir) will be
removed as well.

If not running DBM sessions, use a Perl script to delete all files not modified in the last one or two days. The
following will work if given an argument of a session directory or session files:

#lperl
expire_sessions.pl —— delete files 2 days old or older

my @files;
my $dir;
foreach $dir (@ARGV) {
just push files on the list
if (-f $dir) { push @files, $_; next; }

next unless —d $dir;

get all the file names in the directory

opendir DIR, $dir or die "opendir $dir: $\n";

push @files, (map { "$dir/$_"} grep(! /M\.\.?$/, readdir DIR));
}

for (@files) {
unless (-f$_) {
warn "skipping $_, not a file.\n";
next;

}
next unless -M $_ >=2;
unlink $_ or die "unlink $_: $!\n";

}
It would be run with a command invocation like:

perl expire_sessions.pl /home/you/catalogs/simple/session
Multiple directory names are acceptable, if there is more than one catalog.

This script can be adjusted as necessary. Refinements might include reading the file to "eval" the session
reference and expire only customers who are not members.

22.4. Expiring Sessions 85

Interchange Documentation (Full)

22.5. My session files change to owner root every day!

You have the expireall —r entry in the root crontab, and it should either be in the Interchange user crontab or
run as:

44 4 * * * sy —c "/ICROOT/bin/expireall —r" ICUSERNAME

22.5. My session files change to owner root every day! 86

23. Interchange Components

Interchange components are merely portions of HTML/ITL that are included into pages within the site
depending on options set in the Admin Ul. The default component set includes the following:

best_horizontal
best_vertical

cart

cart_display
cart_tiny
category_vertical
cross_horizontal
cross_vertical
promo_horizontal
promo_vertical
random_horizontal
random_vertical
upsell_horizontal
upsell_vertical

23.1. Content —> Page Edit

The Interchange Admin Ul offers a page editor function that allows component definitions and options to be
modified for each page within the catalog.

23.1.1. Template

The choices for the Template drop—down are read from template definition files located in the
CATROOT/template directory. These files store the name and description of the template, as well as
components and options for the particular template.

To create a new template for use in the admin, it is best to copy an existing template definition to a new file
name and edit it's contents to suit. Once the catalog is reconfigured, the new choice will be visible within the
Content Page Editor admin function.

Each template option is looped through and a scratch is set using its same name and value.

ITL is used near the bottom of this file to set each option to default values before the page is displayed.

[set page_title][set]

[set page_banner][set]

[set members_only][set]
[set component_before][set]
[set component_after][set]
[set bgcolorl#FFFFFF[/set]

23.1.2. Page Title

Sets the title of the page which is synonymous with the html <title></title> code.

The following code within the template definition file is used to display this option within in the content
editor:

23. Interchange Components 87

Interchange Documentation (Full)

page_title: description: Page title
This code dynamically adds the title to the page:

<title>[scratch page_title]</title>
23.1.3. Page Banner

Sets a textual title for each page which is called by [either][scratch page_banner][or][scratch
page _title][/either] This results in the Page Banner being displayed if defined. Otherwise, the Page Title is
used.

23.1.4. Members Only

The members only function is handled by the following code within each template file:

[if scratch members_only]
[set members_only][/set]
[if Isession logged_in]
[set mv_successpage]@ @MV_PAGE@ @][/set]
[bounce page=login]
[/if]
[/if]

This code says if members only is set to yes and the visitor is logged in, display the page. Otherwise, redire
the visitor to the login page.

23.1.5. Break 1

This code causes a separation in the Content Editor between the next set of options. (A blue line)

23.1.6. Horizontal Before Component

This allows the inclusion of a defined component to be displayed before, or above, the page's content. It is
called with the following code within the LEFTRIGHT_TOP template:

[if scratch component_before]
[include file="templates/components/[scratch component_before]"]
[set component_before][/set]

[/if]
23.1.7. Horizontal After Component

This function allows the inclusion of a defined component to be displayed after or below the page's content.
It's called with the following code within the LEFTRIGHT_BOTTOM template:

[if scratch component_after]
[include file="templates/components/[scratch component_after]"]
[set component_after][/set]

[/if]

23.1.3. Page Banner 88

Interchange Documentation (Full)

23.1.8. Horizontal Item Width

This setting allows you to choose how many items the horizontal components display. For example, the
horizontal best sellers component uses this setting to randomly select the best sellers. Notice the default to
nothing is defined.

random="[either][scratch component_hsize][or]2[/either]"

23.1.9. Special Tag

This setting is only viable when a promotion is used for a horizontal component. It tells the promotional
component which rows to evaluate in the merchandising table for display within the component. This setting
normally correlates to the featured column of the merchandising table as follows:

[query arrayref=main
sql="
SELECT sku,timed_promotion,start_date,finish_date
FROM merchandising
WHERE featured = '[scratch hpromo_type]'

“I/query]
23.1.10. Before/After Banner

Allows a title for the horizontal components to be defined to displayed in a header above the component's
items. It is called with the [scratch hbanner] tag.

23.1.11. Break 2

This code causes a separation in the Content Editor between the next set of options. (A blue line)

23.1.12. Vertical Component

Defines a component to be displayed along the right side of the LEFTRIGHT_BOTTOM template. It is callec
from the template with the following code:

[include file="templates/components/[scratch component_right]"]

23.1.13. Vertical Items Height

Sets the number of items to display within the vertical component. Called with the following code:

random="[either][scratch component_vsize][or]3[/either]"

23.1.14. Right Banner

Allows a title to be set for a vertical component which is displayed as a header above the items in the vertice
component. It's called with the [scratch vbanner] tag.

23.1.8. Horizontal Item Width 89

Interchange Documentation (Full)

23.1.15. Special Tag

Essentially the same as the Special Tag setting described in item number 9 above.

23.1.16. Background Color

Allows the background color of the page to be selected. The choices are stored within the page or template
definition as in:

bgcolor:
options: #FFFFFF=White,pink=Pink
widget: select
description: Background color

23.1.17. Content

Allows the page code to be downloaded, uploaded and viewed/edited. Only the code between <!-- BEGIN
CONTENT ——> and <!-— END CONTENT —-> is displayed or can be edited here.

23.1.18. Preview, Save, and Cancel buttons

Allows the changes to the edited page to be previewed in a pop—up browser window, or saved. Cancel retur
you to the page editor selection page.

23.1.19. Save template in page

Template settings are stored in the template definitions by default. This allows a common set of choices for
template settings for all pages. If specific setting options are desired for a page, the template can be saved
within the page so that it may have individual options.

The in—page template definition must be surrounded by [comment] [[comment].

23.2. Custom Admin Ul Options

Other options may be added to the template by defining them in the default definition file, or using in—page
definitions.

When the following lines are added to the template definition, the new option is added to the Admin Ul.
option_name:
options: 1,2*,3
widget: select

description: Option Description
help: Other Details

Each time the template is used, an option_name scratch variable is created. (Called with: [scratch
option_name].) This scratch value will be equal to what's selected here in the admin tool.

The possible widgets include:
break — produces the blue line separator.

23.1.15. Special Tag 90

Interchange Documentation (Full)

radio — produces radio button type selections.
select — standard drop—down selector.
move_combo - select drop down with options and text input for new option.

23.1.15. Special Tag

91

24. Administrative Pages

With Interchange's GlobalSub capability, very complex add—on schemes can be implemented with Perl
subroutines. And with the new writable database, pages that modify the catalog data can be made. See
MasterHost, RemoteUser, and Password.

In addition, any Interchange page subdirectory can be protected from access by anyone except the
administrator if a file called '.access' is present and non-zero in size.

24.1. Controlling Access to Certain Pages

If the directory containing the page has a file .access and that file's size is zero bytes, access can be gated
in one of several ways.

1. If the file .access_gate is present, it will be read and scanned for page—based access. The file has
the form:

page: condition
*: condition

The page is the file name of the file to be controlled (the .html extension is optional). The condition is

either a literal Yes/No or Interchange tags which would produce a Yes or No (1/0 work just fine, as do
true/false).

The entry for * sets the default action if the page name is not found. If pages will be allowed by default, set if
to 1 or Yes. If pages are to be denied by default in this directory, leave blank or set to No. Here is an
example, for the directory controlled, having the following files:

—-rw—-rw—-r—— 1 mike mike 0Jan 8 14:19 .access
-rw—-rw-r—— 1 mike mike 185 Jan 8 16:00 .access_gate
—-rw-rw-r-— 1 mike mike 121 Jan 8 14:59 any.html
—-rw—-rw-r—— 1 mike mike 104 Jan 8 14:19 bar.html
—-rw—-rw-r—— 1 mike mike 104 Jan 8 14:19 baz.html
—-rw—-rw-r—— 1 mike mike 104 Jan 8 14:19 foo.html

The contents of .access_gate:

foo.html: [if session username eq ‘flycat’]
Yes
[/if]
bar: [if session username eq 'flycat’]
[or scratch allow_bar]
Yes
[/if]
baz: yes
*: [data session logged_in]

The page controlled/foo is only allowed for the logged—in user flycat.

The page controlled/bar is allowed for the logged-in user flycat, or if the scratch variable
allow_bar is set to a non-blank, non-zero value.

The page controlled/baz is always allowed for display.

The page controlled/any (or any other page in the directory not named in .access_gate) will be
allowed for any user logged in via UserDB.

24. Administrative Pages 92

Interchange Documentation (Full)

1. If the Variable MV_USERDB_REMOTE_USER is set (non-zero and non-blank), any user logged in
via the UserDB feature will receive access to all pages in the directory. NOTE: If there is a
.access_gate file, it overrides this.

2. If the variables MV_USERDB_ACL_TABLE is set to a valid database identifier, the UserDB module
can control access with simple ACL logic. See USER DATABASE. NOTE: If there is a
.access_gate file, it overrides this. Also, if MV_USERDB_REMOTE_USER is set, this capability
is not available.

24.2. display tag and mv_metadata

Interchange can store meta information for selected columns of tables in a site's database. This meta
information is used when the user interacts with the database. For example, the meta information for a Hide
Item field might specify that a checkbox be displayed when the user edits that field, since the only
reasonable values are on and off. Or, the meta information might specify a filter on data entered for a
Filename field which makes sure that the characters entered are safe for use in a filename.

Widget type specifies the HTML INPUT tag type to use when displaying the field in, say, the item editor.
Width and Height only apply to some of the Widget type options, for instance the Textarea widget.

Label is displayed instead of the internal column name. For example, the category column of the
products table might have a label of Product Category.

Help is displayed below the column label, and helps describe the purpose of the field to the user.

Help url can be used to link to a page giving more information on the field.

Lookup can be used when a field is acting like a foreign key into another table. In that case, use some sort ¢
select box as the widget type, and if referencing multiple rows in the destination table, use a multi select box

with colons_to_null as the pre_filter, and :: as the lookup_exclude.

Filter and pre_filter can be used to filter data destined for that field or data read from that field,
respectively.

Repeat?: The Interchange back office Ul uses the mv_metadata table to discover formatting information for
field, table, and view display. The information is kept in fields in the mv_metadata table, and is used to selec
the display, the HTML input type, the size (height and width where appropriate), label, help text, additional
help URL, and default value display.

It works in conjunction with the [display ...] usertag defined in the Interchange Ul as well as in specific pages
in the Ul. The [display] tag has this syntax:

[display table=tablename column=fieldname key=key arbitrary=tag filter=op ...]
In the simplest use, the formatting information for a table form field is called with:
[display table=products column=category key="0s28007"]

The mv_metadata table is scanned for the following keys:

24.2. display tag and mv_metadata 93

Interchange Documentation (Full)

products::category::0s28007
products::category

If a row is found with one of those keys, then the information in the row is used to set the display widget. If
no row is found, an INPUT TYPE=TEXT widget is displayed. If the data is all digits, a size of 8 is used,
otherwise the size is 60.

If the following row were found (not all fields shown, would be tab—-separated in the actual data):

code type width height label options
products::category text 20 Category

Then this would be output:
<INPUT TYPE=text SIZE=20 VALUE="*category*">
If the following row were found:

code type width height label options
products::category select Category =none, product=Hardware

Then the following would be output:

<SELECT NAME=category>

<OPTION VALUE="">none

<OPTION VALUE="product">Hardware
</SELECT>

The standard widget types are:
text
The default. Uses the fields:
width size of input box
textarea
Format a <TEXTAREA> </TEXTAREA> pair. Uses the fields:

width COLS for textarea
height ROWS for textarea

select

Format a <SELECT> </SELECT> pair with appropriate options. Uses the fields:

height SIZE for select

default Default for SELECTED

options Options for a fixed list (or prepended to a lookup)
lookup signals a lookup (used as field name if "field" empty)
field field to look up possible values in

db table to look up in if not current table

lookup_exclude regular expression to exclude certain values from lookup

24.2. display tag and mv_metadata 94

25. Usertag Reference

Admin Tool-specific usertags.

25. Usertag Reference

95

26. Admin Tool Database Tables

26.1. mv_metadata.asc

code
Table::Column to be operated on.
Database table
type
Widget type (Select the basic display type for the field)
textarea = Textarea
text = Text Entry (default)
select = Select Box
yesno = Yes/No (Yes=1)
noyes = No/Yes (No=1)
multiple = Multiple Select
combo = Combo Select
reverse_combo = Reverse Combo
move_combo = Combo move
display = Text of option
hidden_text = Hidden(show text)
radio = Radio box
radio_nbsp = Radio (nbsp)
checkbox = Checkbox
check_nbsp = Checkbox (nbsp)
imagedir = Image listing
imagehelper = Image upload
date = Date selector
value = Value
option_format = Option formatter
show = Show all options
width
Width (SIZE for TEXT, COLS for TEXTAREA, Label limit for SELECT)
height
Height (SIZE for SELECT, ROWS for TEXTAREA)
field
Field for lookup (can be two comma separated fields, in which
case second is used as the label text. Both must be in the
same table.)
db
name
Variable name (normally left empty, changes variable name to
send in form)
outboard
Select directory for image listing widget
options
options in the format <blockquote>value=label*</blockquote>
attribute
Column name (Do not set this.)
label
help
Help (displays at top of page)
lookup
Lookup select (Whether lookup is performed to get options for a
select type. If nothing is in the field, then used as the name
of the field to lookup in. Use lookup table if you want to look
up in a different table.
filter
Filters (Filters which can transform or constrain your data.
Some widgets require filters.)
help_url

26. Admin Tool Database Tables

Interchange Documentation (Full)

Help URL (links below help text)
A URL which will provide more help
pre_filter
lookup_exclude
ADVANCED: regular expression that excludes certain keys from the lookup
prepend
append
Append HTML (HTML to be appended to the widget. Will substitute
in the macros _UI_TABLE_, _UI_COLUMN_, _UI_KEY_, and _UI_VALUE_,
and will resolve relative links with absolute links.)
display_filter

26. Admin Tool Database Tables

97

27. makecat — Set Up a Catalog from a Template

After Interchange is installed, you need to set up at least one catalog. Interchange will not function properly
until a catalog is created.

The supplied makecat script, which is in the Interchange program directory bin, is designed to set up a
catalog based on the user's server configuration. It interrogates the user for parameters like which directorie
to use, a URL to base the catalog in, HTTP server definitions, and file ownership. It gives relevant examples
of the entries it expects to receive.

Note: A catalog can only be created once. All further configuration is done by editing the files within the
catalog directory.

The makecat script requires a catalog skeleton to work from. The Foundation demo is distributed with
Interchange. See the icfoundation document for information on building the Foundation demo store. Other
demo catalogs are available at http://www.icdevgroup.org/.

It is not normally necessary for you to understand how to build catalog skeletons for use with makecat, but tl
following information will help you if you should ever need to.

27.1. Catalog Skeletons

A catalog skeleton contains an image of a configured catalog. The best way to see what the makecat progre
does is to configure the simple demo and then run a recursive diff on the template and configured catalog
directories:

cd /usr/local/interchange
diff —r construct catalogs/construct

The files are mostly identical, except that certain macro strings have been replaced with the answers given 1
the script. For example, if www.mydomain.com was answered at the prompt for a server name, this
difference would appear in the catalog.cfg file:

template
Variable SERVER_NAME __ MVC_SERVERNAME_

configured catalog
Variable SERVER_NAME www.mydomain.com

The macro string __ MVC_SERVERNAME___ was substituted with the answer to the question about server
name. In the same way, other variables are substituted, and include:

MVC_BASEDIR MVC_IMAGEDIR
MVC_CATROOT MVC_IMAGEURL
MVC_CATUSER MVC_MAILORDERTO
MVC_CGIBASE MVC_MINIVENDGROUP
MVC_CGIDIR MVC_MINIVENDUSER
MVC_CGIURL MVC_SAMPLEHTML
MVC_DEMOTYPE MVC_SAMPLEURL
MVC_DOCUMENTROOT MVC_VENDROOT
MVC_ENCRYPTOR

27. makecat — Set Up a Catalog from a Template 98

Interchange Documentation (Full)

Note: Not all of these variables are present in the "construct" template, and more may be defined. In fact, ar
environment variable that is set and begins with MVC_ will be substituted for by the makecat script. For
example, to set up a configurable parameter to customize the COMPANY variable in catalog.cfg, run a
pre—qualifying script that set the environment variable MVC_COMPANY and then place in the catalog.cfg
file:

Variable COMPANY __MVC_COMPANY_

All files within a template directory are substituted for macros, not just the catalog.cfg file. There are two
special directories named html and images. These will be recursively copied to the directories defined as
SampleHTML and ImageDir.

Note: The template directory is located in the Interchange software directory, i.e., where

interchange.cfg resides. Avoid editing files in the template directory. To create a new template, it is
recommended that it should be named something besides ‘construct' and a copy of the construct demo
directory be used as a starting point. Templates are normally placed in the Interchange base directory, but c
be located anywhere. The script will prompt for the location if it cannot find a template.

In addition to the standard parameters prompted for by Interchange, and the standard catalog creation
procedure, four other files in the config directory of the template may be defined:

additional_fields —— file with more parameters for macro substitution
additional_help —— extended description for the additional_fields
precopy_commands —-- commands passed to the system prior to catalog copy
postcopy_commands —— commands passed to the system after catalog copy

All files are paragraph—based. In other words, a blank line (with no spaces) terminates the individual setting

27.1.1. Additional fields

The additional_fields file contains:

PARAM
The prompt. Set PARAM to?
The default value of PARAM7Alternate value of PARAM

This would cause a question during makecat:

The prompt. Set PARAM to?.....[The default value of PARAM]

The default value line can contain alternate values, separated by tabs from the default value. (The default
value may not contain a TAB character.) This will allow command-line editing to cycle between the different
values —— usually with the UP and DOWN arrow keys.

If you wish to set the parameter to the default value in this file without a prompt, precede the parameter with
an exclamation point, i.e.:

IPARAM
The prompt. Set PARAM to?
default value”lalternate value

27.1.1. Additional fields 99

Interchange Documentation (Full)

If you wish only to prompt for a value if a previous parameter was set, put the previous parameter to set in
curly brackets before the actual parameter:

{MYSQL}SQLDSN
Data source name (DSN) for MySQL?
dbi:mysql:itest_ MVC_CATALOGNAME__

The above will be ignored if the MYSQL parameter was not previously set to a true value.

Note that information collected in the main makecat run (in this case, the catalog nhame) can be inserted via
macro substitution.

27.1.2. Additional help

If the additional_help file is present, additional instructions for PARAM may be provided.

PARAM

These are additional instructions for PARAM, and they
may span multiple lines up to the first blank line.

The prompt would now be:

These are additional instructions for PARAM, and they
may span multiple lines up to the first blank line.

The prompt. Set PARAM to?.....[The default value of PARAM]

27.1.3. Command files

If the file config/precopy_commands exists, it will be read as a command followed by the prompt/help value.

mysgladmin create _ MVC_CATALOGNAME___
We need to create an SQL database for your Interchange
database tables.

This will cause the prompt:

We need to create an SQL database for your Interchange
database tables.

Run command "mysqgladmin create simple"?
If the response is "y" or "yes," the command will be run by passing it through the Perl system() function. As
with any of the additional configuration files, MVC_PARAM macro substitution is performed on the
command and help. Proper permissions for the command are required.

The file config/postcopy_commands is exactly the same as <precopy_commands>, except the prompt occu
after the catalog files are copied and macro substitution is performed on all files.

There may also be SubCatalog directives:

SubCatalog easy simple /home/catalogs/simple /cgi-bin/easy

27.1.2. Additional help 100

Interchange Documentation (Full)

easy

The name of the subcatalog, which also controls the name of the subcatalog configuration file. In this case,
is easy.cfg.

simple

The name of the base configuration that will be the basis for the catalog. Parameters in the easy.cfg file that
are different will override those in the catalog.cfg file for the base configuration.

The remaining parameters are similar to the Catalog directive.

Additional interchange.cfg parameters set up administrative parameters that are catalog wide. See the serve
configuration file for details on each of these.

Each catalog can be completely independent with different databases, or catalogs can share pages, databa
and session files. This means that several catalogs can share the same information, allowing "virtual malls."

27.2. Manual Installation of Catalogs

An Interchange installation is complex, and requires quite a few distinct steps. Normally you will want to use
the interactive catalog builder, makecat, described above. It makes the process much easier. Please see th
iccattut document for a full tutorial on building a catalog by hand.

27.2. Manual Installation of Catalogs 101

28. Link Programs

Interchange requires a web server that is already installed on a system. It does have an internal server whic
can be used for administration, testing, and maintenance, but this will not be useful or desirable in a
production environment.

As detailed previously, Interchange is always running in the background as a daemon, or resident program.
monitors either a UNIX-domain file—based socket or a series of INET-domain sockets. The small CGlI link
program, called in the demo simple, is run to connect to one of those sockets and provide the link to a
browser.

Note: Since Apache is the most popular web server, these instructions will focus on it. If using another type |
web server, some translation of terms may be necessary.

A ScriptAlias or other CGI execution capability is needed to use the link program. (The default
ScriptAlias for many web servers is /cgi—bin.) If ExecCGl is set for all directories, then any
program ending in a particular file suffix (usually .cgi) will be seen as a CGI program.

Interchange, by convention, names the link program the same name as the catalog ID, though this is not
required. In the distribution demo, this would yield a program name or SCRIPT_PATH of

/cgi—bin/simple or /simple.cgi. This SCRIPT_PATH can be used to determine which Interchange

catalog will be used when the link program is accessed.

28.1. UNIX-Domain Sockets

This is a socket which is not reachable from the Internet directly, but which must come from a request on the
server. The link program vlink is the provided facility for such communication with Interchange. This is the
most secure way to run a catalog, for there is no way for systems on the Internet to interact with Interchange
except through its link program.

The most important issue with UNIX—domain sockets on Interchange is the permissions with which the CGI
program and the Interchange server run. To improve security, Interchange normally runs with the socket file
having 0600 permissions (rw———-———), which mandates that the CGI program and the server run as the sat
user ID. This means that the vlink program must be SUID to the same user ID as the server executes under
(Or that CGIWRAP is used on a single catalog system).

With Interchange's multiple catalog capability, the permissions situation gets a bit tricky. Interchange comes
with a program, makecat, which configures catalogs for a multiple catalog system. It should properly set up
ownership and permissions for multiple users if run as the superuser.

28.2. INET-Domain Sockets

These are sockets which are reachable from the Internet directly. The link program tlink is the provided
facility for such communication with Interchange. Other browsers can talk to the socket directly if mapped to
a catalog with the global TcpMap directive. To improve security, Interchange usually checks that the reques
comes from one of a limited number of systems, defined in the global TcpHost directive. (This check is not
made for the internal HTTP server.)

28. Link Programs 102

Interchange Documentation (Full)

28.3. Internal HTTP Server

If the socket is contacted directly (only for INET-domain sockets), Interchange will perform the HTTP servel
function itself, talking directly to the browser. It can monitor any number of ports and map them to a
particular catalog. By default, it only maps the special catalog mv_admin, which performs administrative
functions. The default port is 7786, which is the default compiled into the distribution tlink program. This port
can be changed via the TcpMap directive.

To prevent catalogs that do not wish access to be made in this way from being served from the internal serv

Interchange has a fixed SCRIPT_PATH of /catalogname (/simple for the distribution demo) which needs
to be placed as an alias in the Catalog directive to enable access. See TcpMap for more details.

28.4. Setting Up VLINK and TLINK

The vlink and tlink programs, compiled from vlink.c and tlink.c, are small C programs which

contact and interface to a running Interchange daemon. The VLINK executable is normally made setuid to t
user account which runs Interchange, so that the UNIX-domain socket file can be set to secure permissions
(user read—write only). It is normally not necessary for the user to do anything. They will be compiled by the
configuration program. If the Interchange daemon is not running, either of the programs will display a
message indicating that the server is not available. The following defines in the produced config.h should
be set:

LINK_FILE

Set this to the name of the socket file that will be used for configuration, usually
"lusr/local/lib/interchange/etc/socket" or the "etc/socket” under the directory chosen for the VendRoot.

LINK_HOST

Set this to the IP number of the host which should be contacted. The default of 127.0.0.1 (the local machine
is probably best for many installations.

LINK_PORT

Set this to the TCP port number that the Interchange server will monitor. The default is 7786 (the decimal
ASCII codes for 'M' and 'V') and does not normally need to be changed.

LINK_TIMEOUT

Set this to the number of seconds vlink or tlink should wait before announcing that the Interchange
server is not running. The default of 45 is probably a reasonable value.

28.5. Compiling VLINK and TLINK

There is a compile_link program which will assist with this. Do:

perldoc VENDROOT/bin/compile_link

for its documentation.

28.3. Internal HTTP Server 103

Interchange Documentation (Full)

28.6. Manually Compiling VLINK and TLINK

Change directories to the src directory, then run the GNU configure script:

cd src
Jconfigure

There will be some output displayed as the configure script checks the system. Then, compile the programs
perl compile.pl
To compile manually:

cc vlink.c —o vlink
cc tlink.c —o tlink

On manual compiles, ensure that the C compiler will be invoked properly with this little ditty:

perl —e 'do "syscfg"; system("$CC $LIBS $CFLAGS $DEFS -o tlink tlink.c");'
perl —e 'do "syscfg"; system("$CC $LIBS $CFLAGS $DEFS —o vlink vlink.c");'

On some systems, the executable can be made smaller with the strip program, if available. It is not required

strip vlink
strip tlink

If Interchange is to run under a different user account than the individual configuring the program, make that
user the owner of vlink. Do not make vlink owned by root, because making vlink SETUID root is an
huge and unnecessary security risk. It should also not normally run as the default Web user (often nobody ©

http)).

chown interchange vlink

Move the vlink executable to the cgi—bin directory:
mv vlink /the/cgi—bin/directory

Make vlink SETUID:

chmod u+s /the/cgi—bin/directory/vlink
Most systems unset the SUID bit when moving the file, so change it after moving.

The SCRIPT_NAME, as produced by the HTTP server, must match the name of the program. (As usual, let
the makecat program do the work.)

28.7. VLINK or TLINK Compile Problems

The latest version of vlink.c and tlink.c have been compiled on the following systems:

AlX 4.1
BSD2.0 (Pentium/x86)

28.6. Manually Compiling VLINK and TLINK 104

Interchange Documentation (Full)

Debian GNU/Linux

Digital Unix (OSF/Alpha)

FreeBSD 2.x, 3.X, 4.X

IRIX 5.3, IRIX 6.1

OpenBSD 2.7

Red Hat Linux 6.2, 7.0, 7.1, 7.2, 7.3, 8.0
SCO OpenServer 5.x

Solaris 2.x (Sun compiler and GCC)
Solaris 7 (Sun compiler and GCC)
Sun0S 4.1.4

Some problems may occur. In general, ignore warnings about pointers.

Make sure that you have run the configure program in the src directory. If you use Interchange's makecat
program, it will try to compile an appropriate link at that time, and will substitute tlink.pl if that doesn't work.

You can compile manually with the proper settings with this series of commands:

cd src

Jconfigure

perl —e 'do "syscfg"; system ("$CC $CFLAGS $DEFS $LIBS -o tlink tlink.c")'
perl —e 'do "syscfg"; system ("$CC $CFLAGS $DEFS $LIBS —o vlink vlink.c")'

There is also a compile_link program which has documentation embedded and which will compile an
appropriate link. If you cannot compile, try using the tlink.pl script, written in Perl instead of C, which
should work on most any system. Since vlink needs to have values set before compilation, a pre-compiled
version will not work unless it has the exact values you need on your system. If you can use the defaults of
'localhost' and port 7786, you may be in luck.

28.6. Manually Compiling VLINK and TLINK 105

29. Installing Perl Modules without Root Access

Installing Interchange without root access is no problem. However, installing Perl modules without root
access is a little trickier.

You must build your makefile to work in your home dir. Something like:

PREFIX=~/usr/local \
INSTALLPRIVLIB=~/usr/local/lib/perl5 \
INSTALLSCRIPT=~/usr/local/bin \
INSTALLSITELIB=~/ustr/local/lib/perl5/site_perl \
INSTALLBIN=~/usr/local/bin \
INSTALLMAN1DIR=~/usr/local/lib/perl5/man \
INSTALLMAN3DIR=~/ustr/local/lib/perl5/man/man3

Put this in a file, say 'installopts', and use it for the Makefile.PL.
perl Makefile.PL “cat installopts’
Then, forget ./config. Just do:

make
make test
make install

Some of the tests may fail, but that's probably ok.

Also make sure to install Bundle::Interchange, which will need the same config data as you put into
'installopts'.

29. Installing Perl Modules without Root Access 106

30. Installation Troubleshooting

Interchange uses the services of other complex programs, such as Perl, Web servers, and relational databa
to work. Therefore, when there is a problem, check these programs before checking Interchange. Many mot
basic installation problems have to do with those than with Interchange itself.

If an error message is received about not being able to find libraries, or a core dump has occurred, or a
segment fault message, it is always an improperly built or configured Perl. Contact the system administrator
or install a new Perl.

The makecat program is intended to be used to create the starting point for the catalog. If the demo does nc
work the first time, keep trying. If it still does not work, try running in INET mode.

Check the two error log files: error.log in the Interchange home directory (where interchange.cfg resides)
and error.log in the catalog directory (where catalog.cfg resides; there can be many of these). Many
problems can be diagnosed quickly if these error logs are consulted.

Check the README file, the FAQ, and mail list archive at the official Interchange web site for information:
http://www.icdevgroup.org/
Double check the following items:

1. Using UNIX sockets?
¢ Check that the vlink program is SUID, or the appropriate changes have been made in the
SocketPerms directive. Unless the files are world—writable, the vlink program and the
Interchange server must run as the same user ID! If running CGI-WRAP or SUEXEC, the